Wide-field InfraRed Surveys: Science and Techniques

We performed systematic observations of the H I Br α line (4.05 μ m) in 51 nearby (z < 0.3) ultraluminous infrared galaxies (ULIRGs) to quantitatively estimate star formation rates (SFRs) with AKARI. The Brα line is predicted to be the brightest among the H I recombination lines in ULIRGs with visual extinction higher than 15 mag. We estimated the relative contribution of starburst to the total infrared luminosity ($L_{\rm IR}$) using the ratio of the Br α line luminosity ($L_{\rm Br}\alpha$) to $L_{\rm IR}$. The $L_{\rm Br}\alpha/L_{\rm IR}$ ratio in LINERs or Seyferts is significantly lower ($\sim 50\%$) than that in H II galaxies. This result indicates that active galactic nuclei contribute significantly ($\sim 50\%$) to L_{IR} in LINERs as well as Seyferts. We also estimate the absolute contribution of starburst using the ratio of star formation rates (SFRs) derived from $L_{Br\alpha}$ (SFR_{Br\alpha}) and those needed to explain L_{IR} (SFR_{IR}). The mean SFR_{Bra}/SFR_{IR} ratio is only 0.33 even in H II galaxies. We attribute this apparently low SFR_{Bra}/SFR_{IR} ratio to the absorption of ionizing photons by dust within H II regions. The WFIRST/AFTA grism will enable us to investigate this problem in a very large number of galaxies.

1. Introduction

UltraLuminous InfraRed Galaxies (ULIRGs)

ULIRGs radiate most ($\geq 90\%$) of their extremely large, quasar-like luminosities as infrared dust emission.

> $(L_{\rm IR} \ge 10^{12} L_{\odot})$ \Rightarrow precursors of quasars?

Energy sources are hidden behind dust.

- Active Galactic Nuclei (AGN) and/or starburst?

Distinguishing energy sources of ULIRGs has Braline been an important topic on galaxy evolution. $L_{\rm Br\alpha}^{\rm luminosity}$

We focus on the H I Br α line to estimate the contribution of starburst to L_{IR} .

T ^(ULIRG)	(AGN)	(SF)
$L_{\rm IR}$ =	$= L_{\text{IR}}$ \dashv	$7L_{\rm IR}$
tal infrared	AGN	star formation
uminosity	contribution	contributio

2. Method H I recombination line Br α (n:5 \rightarrow 4, 4.05 μ m) marized to the Br α flux - less affected by dust with no extinction $(A_{17} = 0)$ flux extinction Hα (656 nm) extinction n:3→2 expected in ULIRGs Paα (1.88 μm) \Rightarrow brightest among H I **Brα** (4.05 μm) lines in ULIRGs n:5→4 Pfα (7.46 μm) Obser 0 $(A_V \ge 15 \text{ mag})$ most strongly n:6→5 observed in ULIRGs direct measure of 20 ionizing photons, Visual extinction A_V (mag) tracing OB stars Line ratios - 10000 K, low-density limit, case B (Osterbrock & Ferland 2006) Extinction curve - Milky Way dust model (Draine 2003) *star formation rate Its luminosity $(L_{Br\alpha})$ reflects \Rightarrow the strength of starburst, i.e. SFR^{*}. We utilize the $L_{\rm Br\alpha}/L_{\rm IR}$ ratio as an indicator of

the contribution of starburst to L_{IR} It is difficult to observe the Br α line from the ground. \Rightarrow We used unique data (2.5-5.0 µm) of AKARI.

Ionizing Photon Deficit in Ultraluminous Infrared Galaxies Probed with AKARI

Kenichi Yano (Univ. of Tokyo, ISAS/JAXA) Takao Nakagawa, Naoki Isobe (ISAS/JAXA), Mai Shirahata (NAOJ)

CSTS JAXA

4. Ionizing photon deficit

Absolute contribution of starburst to L_{IR}

Comparison of SFRs derived from $L_{Br\alpha}$ (SFR_{Br\alpha}) with those needed to explain L_{IR} (SFR_{IR})

$r_{\alpha}/L_{IR} = 6.9 \times 10^{-5}$ ean ratio in H II galaxies)	$SFR_{Br\alpha}/SFR_{IR} = 0.33$
$SFR_{IR}(M_{\odot}yr^{-1}) \sim 1.5 \times 10$ $SFR_{Br\alpha}(M_{\odot}yr^{-1}) \sim 7.1 \times 10$	$0^{-11}L_{\rm IR}(L_{\odot})$ $0^{-7}L_{\rm Bra}(L_{\odot})$ (Kennicutt & Evans 2012)
Starburst explains only	We attribute the low

SFR ratio to absorption of ionizing photons by dust within H II regions.

The Br α line underestimates SFRs by a factor of 3 in ULIRGs.

5. WFIRST grism observation

Our result indicates that other lines tracing ionizing photons (e.g. other H I recombination lines) also show a deficit in populations of dust-rich galaxies.

line

Although careful consideration of dust extinction is required, WFIRST will enable us to investigate this problem in a very large number of distant galaxies.