
WFIRST-AFTA: BEYOND THE LOCAL GROUP

ROBERTO ABRAHAM UNIVERSITY OF TORONTO

What I will <u>not</u> talk about


The WFIRST-2.4 Dark Energy Roadmap

PLAN: HIGHLIGHT & SYNTHESIZE THE EXCITING "BEYOND THE LOCAL GROUP" ONE PAGE SCIENCE IDEAS PRESENTED IN THE SCIENCE DEFINITION TEAM'S 2013 AND 2014 REPORTS.

Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report by the Science Definition Team (SDT) and WFIRST Project

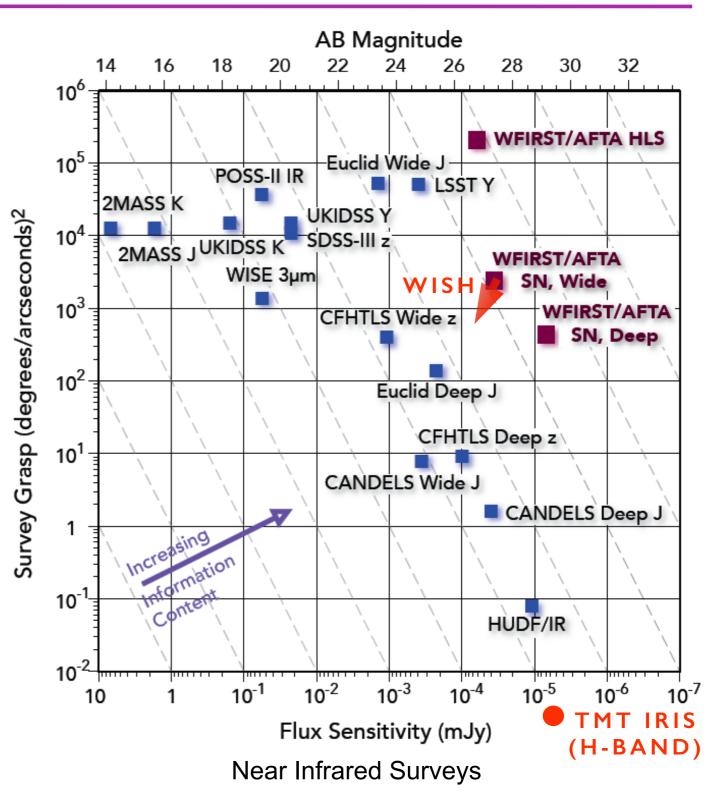
May 24, 2013

Community Members that Submitted 1-page Descriptions of Potential GO Science Programs in the 2013 SDT Report

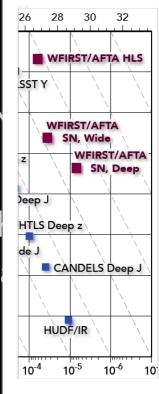
5 (OR 6) YEAR PRIME MISSION

WFIRST-2.4 Design Reference Mission Capabilities											
Imaging Capability 0.281 deg ²						0.11 arcsec/pix			6 – 3	2.0 μm	
Filters Z087			Y10	6	J129		H158	F184		W149	
Wavelengt	h (um)	0.760-0.9		0.927-1	-	1.131-1.454		30-1.774	-		0.927-2.000
PSF EE50 (a	,	0.11	,,,,	0.027		0.12		0.14	0.14		0.13
Spectroscopic	10300)	0.11		Grism (0		1				3 15	
Capability			1 35	,		= 550-800			0.00 μ).6 – 2.0 μ		,
					,	ey Characteri	etice		7.0 – 2.0 μ	, 1	(= 100
Survey	Bandpa	ass		a (deg ²)		Depth		Dura	ation		Cadence
Exoplanet	Z, W	100		2.81		n/a		6 x 72			W: 15 min
Microlensing	_,			2.01		n/a		0 / 12	uuyo		Z: 12 hrs
HLS Imaging	Y, J, H	F184		2000	Y :	= 26.7, J = 26.9	9				n/a
	-,-,-,-					26.7, F184 = 2		1.3 y	ears		
HLS	1.35 –	1.95 μm	-	2000	0.5	x10 ⁻¹⁶ erg/s/cm	n ²	0.6.	looro		n/a
Spectroscopy		•				@ 1.65 μm 0.6 y		ears			
SN Survey								0.5 y	rears		5 days
Wide	Y, J	J		27.44	Y :	Y = 27.1, J = 27.5		(in a 2-yr interval)			
Medium	J, H			8.96	J = 27.6, H = 28.1		1				
Deep	J, H			5.04	J =	: 29.3, H = 29.4	4				
IFU Spec	7 expos	sures with S/N=3/pix, 1 near peak with S/N=10/pix, 1 post-SN reference with S/N=6/pix									
Parallel imaging during deep tier IFU spectroscopy: Z, Y, J, H ~29.5, F184 ~29.0											
Guest Observer Capabilities											
1.4 years of the 5 year prime mission											
		Z087		Y10	6	J129	ŀ	H158	F184		W149
Imaging depth in 2 1000 seconds (m _{AB})		27.15		27.13		27.14	2	27.12	26.15		27.67
t_{exp} for $\sigma_{read} = \sigma_{sky}$ (secs)		200		190		180		180	240		90
Grism depth in 1000 S/N=10 per R=~600 element at AB=20.4 (1.45 μm) or 20.5 (1.75 μm)					′5 μm)						
sec	t_{exp} for $\sigma_{read} = \sigma_{sky}$: 170 secs										
IFU depth in 1000 sec			S/N=10 per R~100 element at AB=24.2 (1.5 $\mu\text{m})$								
Slew and settle	time	chip gap step: 13 sec, full field step: 61 sec, 10 deg step: 178 sec									
Optional Coronagraph Capabilities											
1 year in addition to the 5-year primary mission, interspersed, for a 6-year total mission							ion				
Field of view Annular re			nnular region around star, with 0.2 to 2.0 arcsec inner and outer radii								
			Able to detect gas-giant planets and bright debris disks at the 1 ppb brightness level								
Wavelength range 400 to 1000 nm											
Image mode Images of full annular region with sequential 10% bandpass filters											
Spectroscopy n	node	-			•	n with spectral					
Polarization mo	de	·			-	III Stokes pola					
Stretch goals	0.1 arcsec inner annulus radius, and super-Earth planets										

Other stuff I'll try to do as time permits:


- Think about the guest observer program and how it relates to the baseline surveys.
- Ponder the importance of the evil word synergy and timing with respect to JWST.
- Generally try to understand where WFIRST fits into the experiment vs. facility models for doing astrophysics, and how one might best sell the project to an agency.

WFIRST-AFTA Surveys



- Multiple surveys:
 - High Latitude Survey
 - Imaging, spectroscopy, supernova monitoring
 - Repeated Observations of Bulge Fields for microlensing
 - 25% Guest Observer
 Program
 - Coronagraph
 Observations
- Flexibility to choose optimal approach

A POMPOUS APPROACH TO WFIRST "BEYOND THE LOCAL GROUP" SCIEN

- Thesis: It's a well-defined physics experiment. A dark energy mission the counting and photometering known things. We need to understand dependency so this is a good thing.
- Antithesis: No. It's "Sloan in Space". It allows proper statistical characterization of *known* things, from which tons of astrophysics emerges (including *unknown relationships*). Like SDSS, it will also *discover new rare things*. SDSS is the most productive telescope in history, so this is another good thing.
- **Synthesis**: Both are true. It's a rare example of Sloan in Space emerging naturally from within the constraints of a physics experiment.
- Irrelevant but true: it's easier to predict the scientific return from WFIRST-AFTA than it is to predict the scientific return from JWST.

Focus on the **"Sloan in Space"** aspect. There are two broad approaches opening up discovery space in this model:

Red on the left means the facility in the column cannot do it. So if a row is all red then it means it's unique to WFIRST.

Names are omitted. Text is intentionally illegible... don't even try. Just look at the colours.

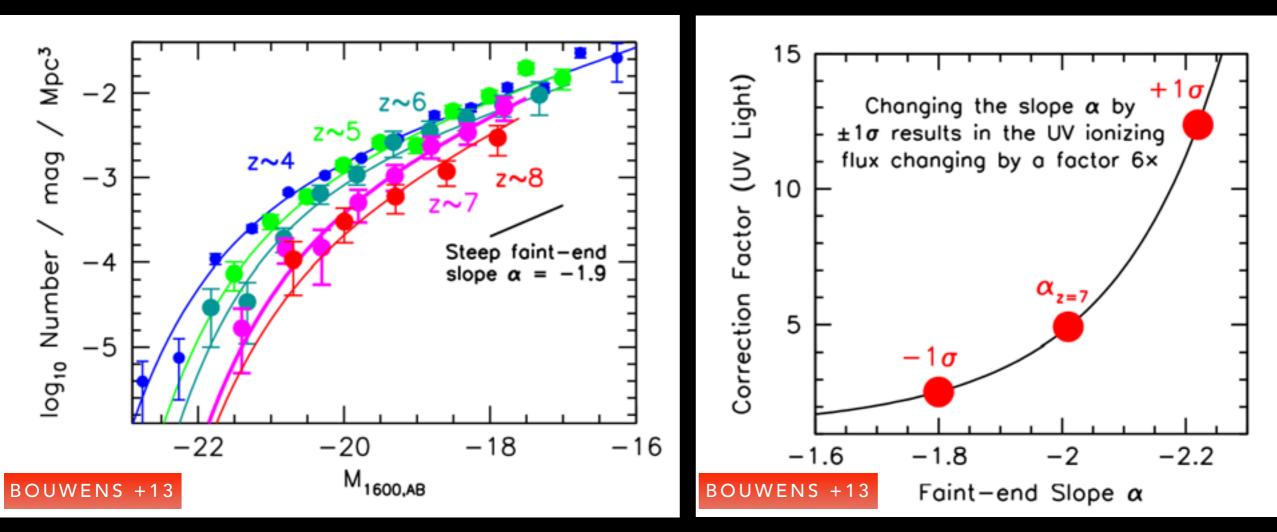
RED is good Lucio Musy Other P ک ک

GREEN is good

X HLS? ers at zn-B in the a

Green means it has that 'X-factor'. For me, this was mainly how exciting it felt, and with bonus points for how synergistic it felt.

Green means it can be done as part of the high-latitude survey so guest observer time would be pointless.


At high-z, this is who we got:

Who we need:

LUMINOSITY FUNCTION OF HIGH-Z GALAXIES

PANELS CREDIT: MOUSTAKAS

Dan Coe (STScl)

Appendix B, p. B-4 SDT Final Report

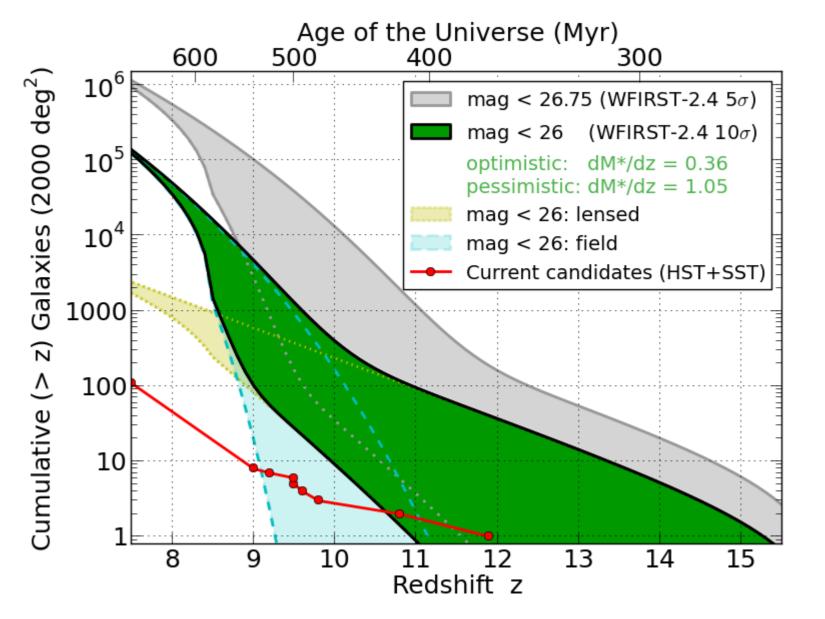
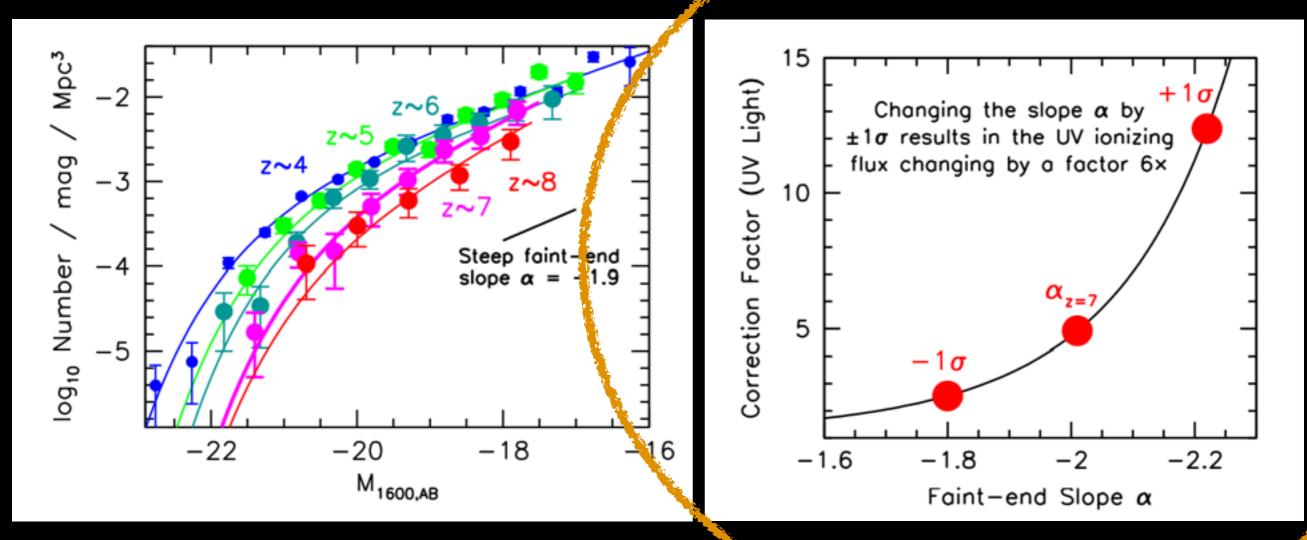


Figure 2-10: Cumulative number of high-z galaxies expected in the HLS. JWST will be able to follow-up on these high z galaxies and make detailed observations of their properties. For understanding the earliest galaxies, the synergy of a wide-field telescope that can discover luminous or highly magnified systems and a large aperture telescope that can characterize them is essential; WFIRST-2.4 and JWST are much more powerful than either one alone. Figur redsh ber c The 2 galax

Ratio (AFTA / DRM1) of Cumulative (>z) Galaxies

10


At high-z, this is who we got:

Who we need:

LOOK A LITTLE MORE CLOSELY AT THIS...

Bouwens +13

FINDING 100,000+ Z>6 GALAXIES, WHILE SPECTACULAR, DOESN'T SOLVE EVERYTHING. NEED TO INVOKE THE 'S WORD'.

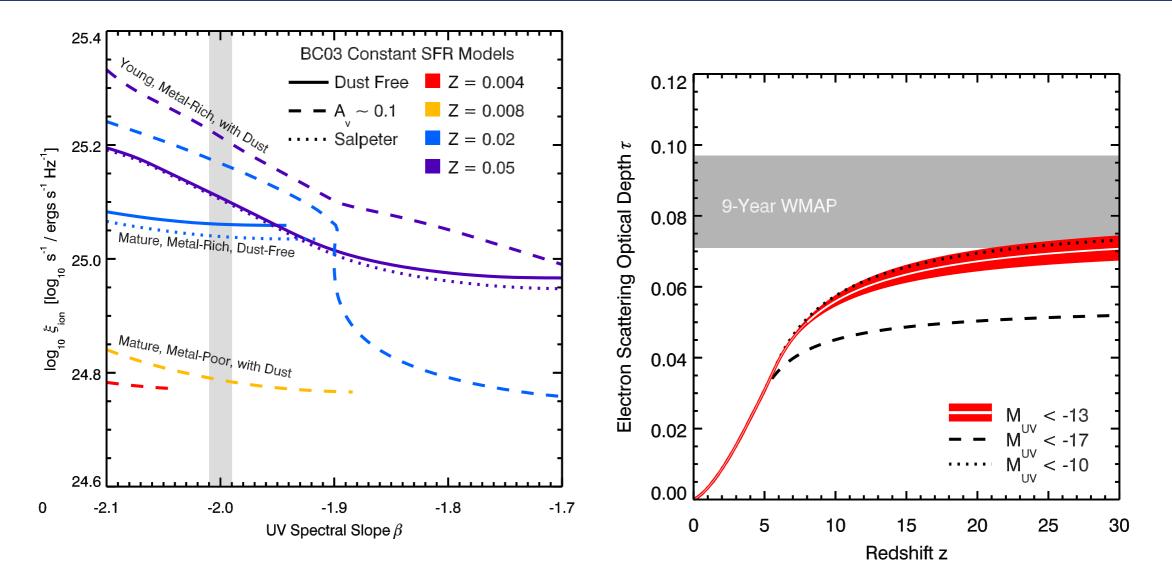
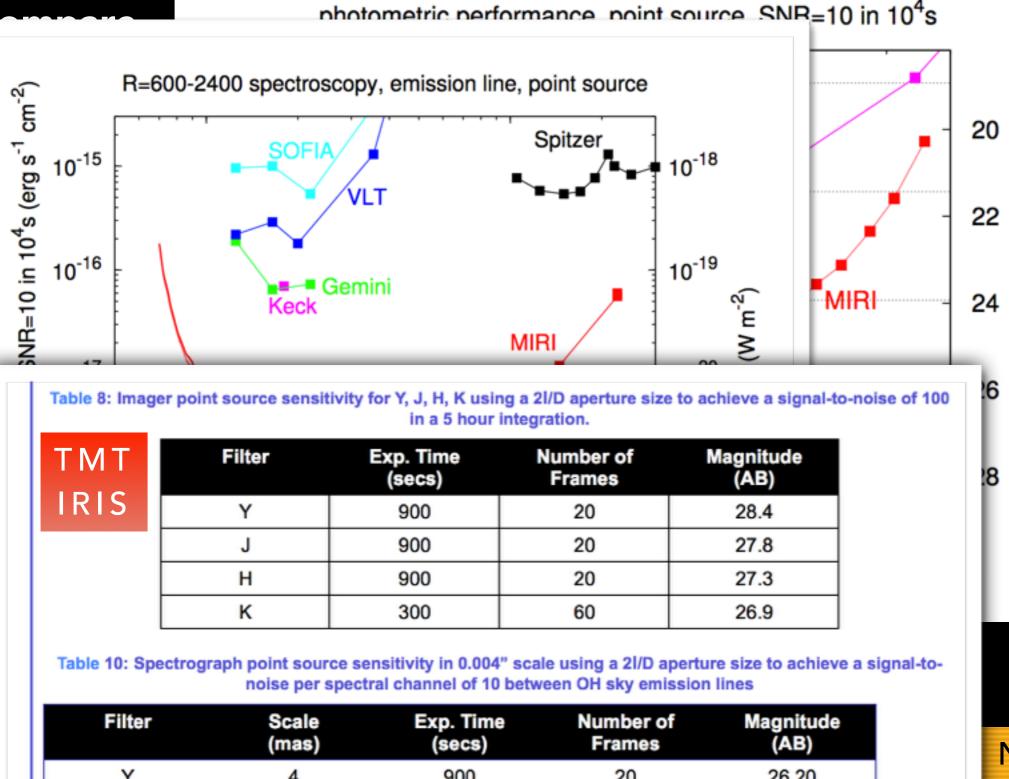
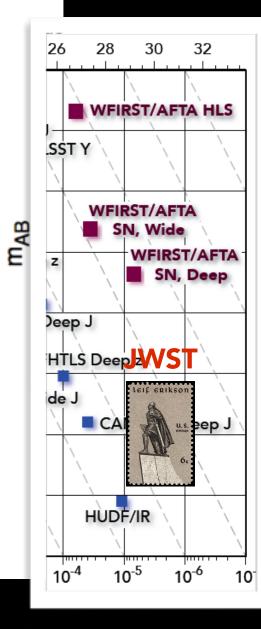
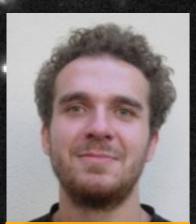




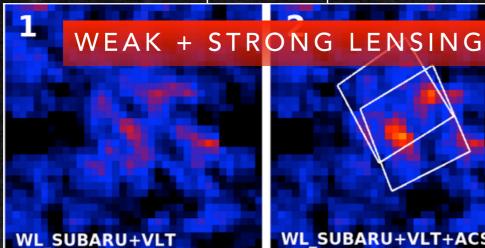
Fig. 4. Left: Degeneracies in inferring the ionizing photon production factor ξ_{ion} in terms of the observed slope β of the ultraviolet continuum, the gray shaded area being that observed for $z \simeq 7-8$ galaxies⁴². Time tracks are shown for stellar population synthesis models of varying dust content, metallicity and the initial mass function³⁰. Right: One aspect of the UV 'photon shortfall' for galaxies as agents of reionization given the abundance of galaxies in the UDF. Assuming a 20% escape fraction and continuity in the declining star formation rate density beyond $z \simeq 10$, the figure shows the need to extend the UV luminosity function lower than the current $M_{UV} = -17$ detection limit to reproduce the optical depth of electron scattering in the WMAP data³⁰.

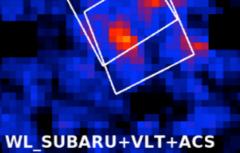
CREDIT: ELLIS REVIEW ON ASTRO-PH: 1411:3330

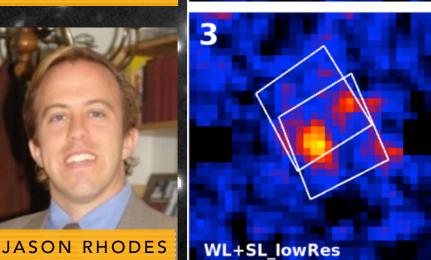


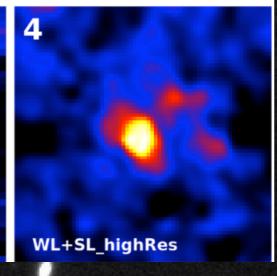
Filter	Scale (mas)	Exp. Time (secs)	Number of Frames	Magnitude (AB)
Y	4	900	20	26.20
J	4	900	20	26.42
н	4	900	20	26.39
к	4	300	60	25.13

NOT <u>UE?</u>


LENSING


FIELD: INCREASE # KNOWN STRONG LENSES BY 100X




DAN STERN

JULIAN MERTEN

FIELD: DM SUBSTRUCTURE COSMOLOGY

TOMMASO TREU CLASH cluster. simulated to WFIRST-AFTA

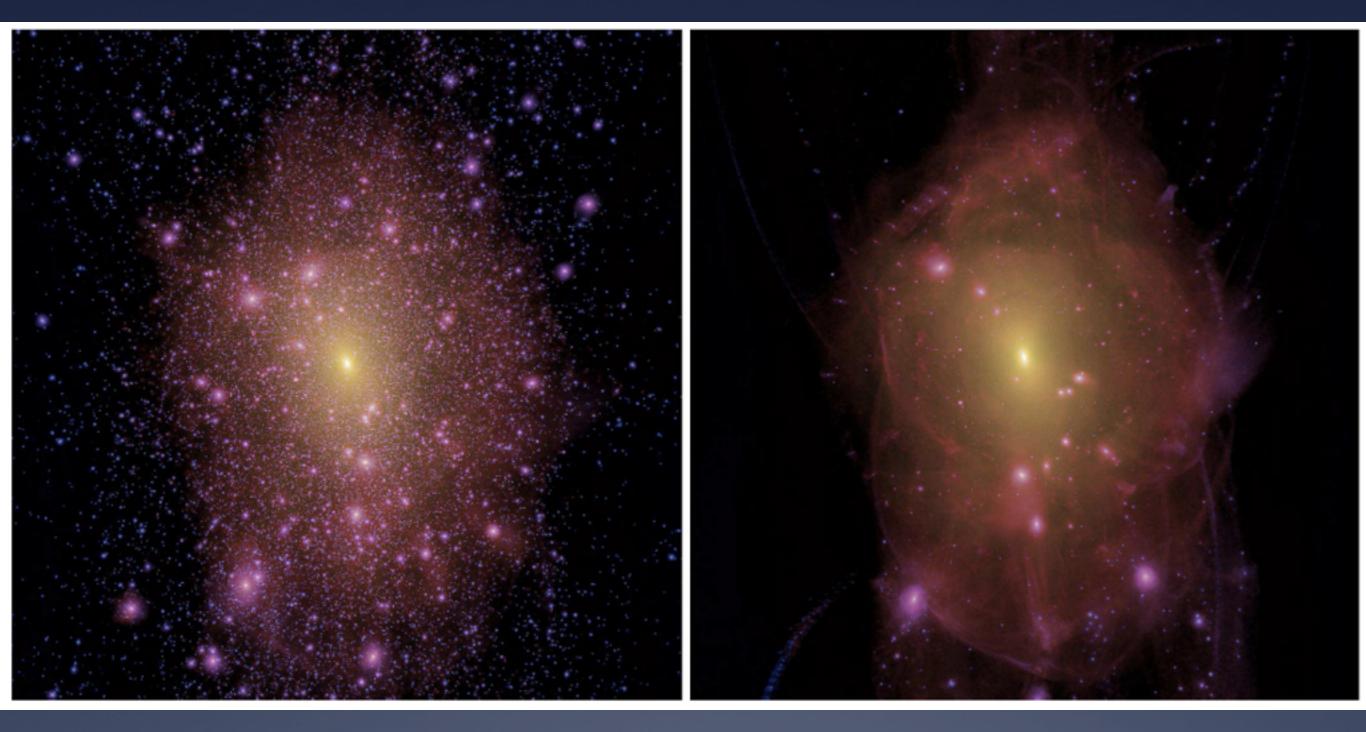
WFIRST-AFTA 15x more sensitive 10x sharper

Euclid

RED is good GREEN is good

Level and a start

No. Need to resolve stars.	Maybe, Do small fields in galaxies.	No (need IR, need colors)	Yes, over smail areas.	No
Maybe	No	No	No	No
No	No-ish. Synergy discussed explicitly.	No - need colors	Yes – but need area for rare populations.	Yes
Nio	No	No	No	No. But I'm not super convinced WFIRST can do this either.
No (need resolution)	No (AO connected FoV too smell)	No. Need colors to disentagle stellar pops.	Yes. Perlect NIRCam case. Wide FoV requirement not justified in view of CANDELS etc.	No
No (need resolution)	No (need wide area to find rare objects)	Yes-ish. But benefit from increased resolution	No-ish. Targets are rare and JWST won't get you to thousands.	Yes
No. Lines are in IR.	No. Targets are rare.	No. Needs grism.	Yes-ish. Probably can do this with NIRISS in in parallel mode if that is formally supported.	No
No. Needs resolution.	No. Targets are relatively rare.	Yes	No	No
No. Needs resolution.	No. Targets are relatively rare.	Yes	No	No
*	No.	Yes.	No. Needs wide area.	No
No. Needs deep IR.	No. Targets relatively rare.	Yes. Need ground-based confirmation of redshifts.	No. Needs wide ara.	High-redshift clusters are being found using many other techniques.
No. Needs deep IR.	No. Targets are relatively rare.	No. Relies on photo z's.	Yes. Targeted follow- ups. Yes. Smaller area though deeper.	No.
No.	No	No (needs grism)	Probably could gauge cutoff z that way as the targets are pretty abundant.	No
No (need IR) No	No. Targets 20- 100/deg*2 No	No. Need IR colors No	Yes, but quite ineffecient.	No
No-ish, LSST find them, but hard to tell if lensed. No-ish, LSST	No	No	No	No
will find many nearby, but not any at z>10	No	No	No	No
No	No	No	*	No
No	No	No	No	No
No	No	No	Na	No
No	No	Yes-ish. But WFIRST will be a huge step up.	No	No
No	No	No	Yes. But WFIRST will allow LF etc to be computed. Probably a big step up.	No
No	No	No	No	No


X HLS?

ers at z>8 in the a neutral gas. Point is to ne where it cuts of

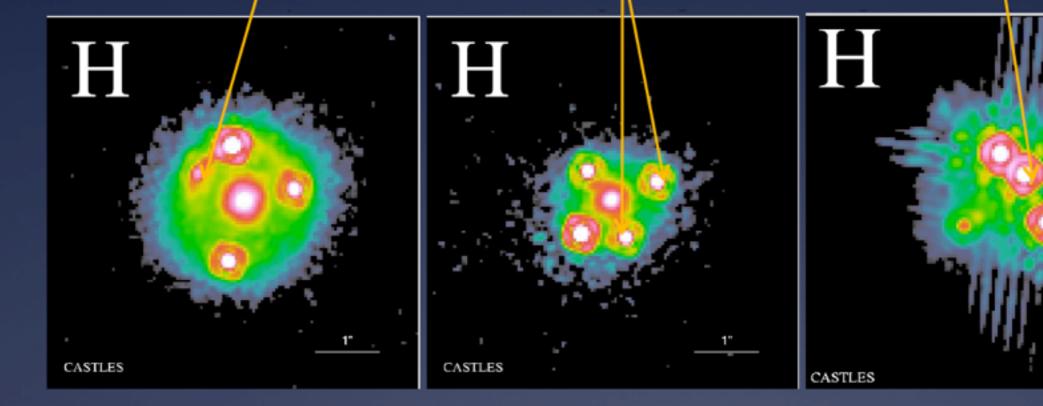
Tommaso Treu wrote this one

Warm Dark Matter

Free streaming ~kev scale thermal relic

Lovell et al. 2012

Slide credit: T. Treu

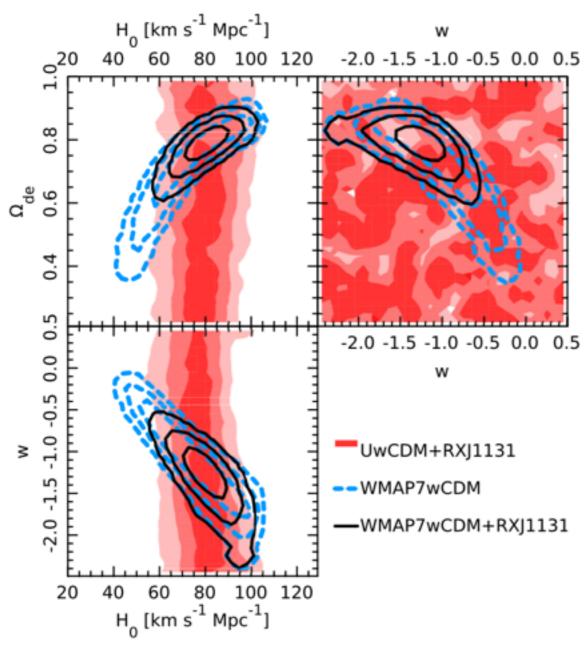

Flux Ratio Anomalies

A smooth mass distribution would predict:

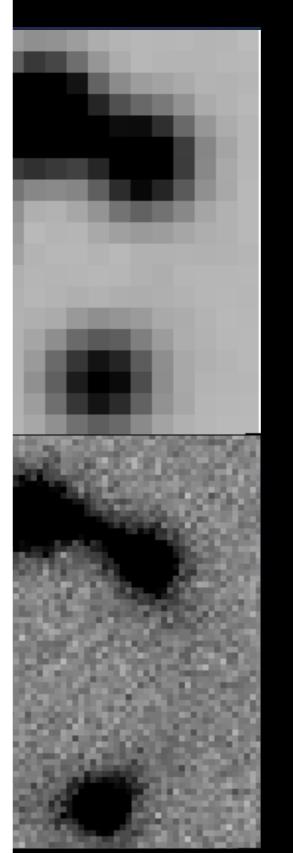
This to be 100x brighter

These to be 2x brighter

This to be 10% brighter


What causes this the anomaly? 1.Dark satellites? 2.Astrophysical noise (i.e. microlensing and dust)?

Slide credit: T. Treu

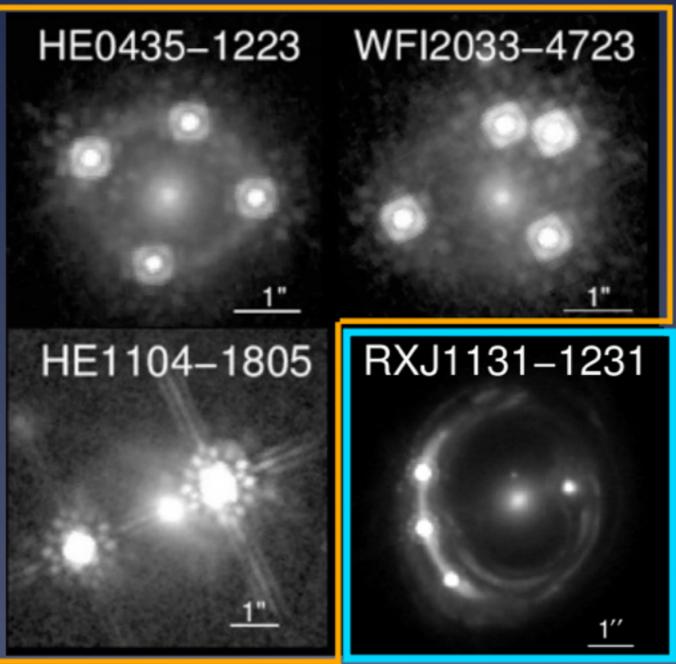

In addition to probing substructure, strong lenses used for

time delay cosmology will be interesting.

Figure 8. RXJ1131–1231 marginalized posterior PDF for H_0 , Ω_{de} , and w in flat wCDM cosmological models. Contours/shades mark the 68.3%, 95.4%, 99.7% credible regions. The three sets of contours/shades correspond to three different prior/data set combinations. Shaded red: RXJ1131–1231 constraints given by the UwCDM prior; dashed blue: the prior provided by the WMAP7 data set alone; solid black: the joint constraints from combining WMAP7 and RXJ1131–1231.

(A color version of this figure is available in the online journal.)

Meng, Treu + 14 (in prep)



Immediate Prospects

time delays of lensed quasars from optical monitoring
expect to have delays with a few percent error for ~20 lenses

HST cycle 20 follow up

HST archival images for lens modeling

How to find the lenses

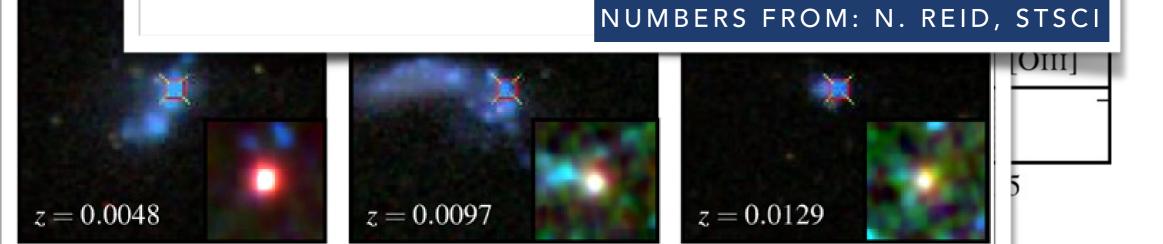
- Carry out large imaging survey.
 - QSO forecasts by Oguri & Marshall (2010)
 - DES (~1000 lensed QSOs, including 150 quads)
 - LSST (~8000 lensed QSOs, including 1000 quads) after 10 years to get enough depth.
 - Or: WFIRST (>10000 lensed QSOs, including >1000 quads) from HLS.
- Find lenses:
 - Different strategies for lensed QSOs and galaxies (Marshall+, Gavazzi+,Kubo+,Belokurov+,Kochanek +,Faure+,Pawase+) and under development (Marshall, Treu, LSST collaboration)
 - Successfully demonstrated by Treu group

Slide credit: T. Treu

SLITLESS SPECTROSCOPY

Z = 0.656

HST WFC3/G141


Arc Model

CG

WFC3 Grism in Cycle 22 with HST :

Requested ~1800 orbits (9% of total) Awarded ~400 orbits (12% of total)

Strong demand for what is supposedly a "niche mode".

NOTE: NIRISS WILL HAVE ~20% THE RESOLUTION OF THE WFIRST GRISM $$\rm R\!\sim\!150~VS~R\!\sim\!700$

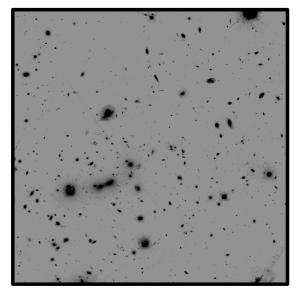
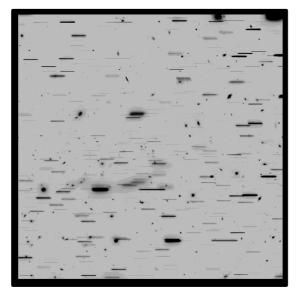
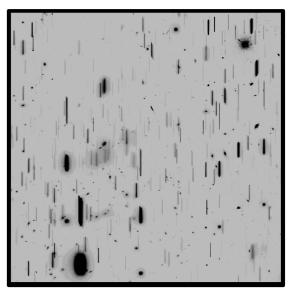
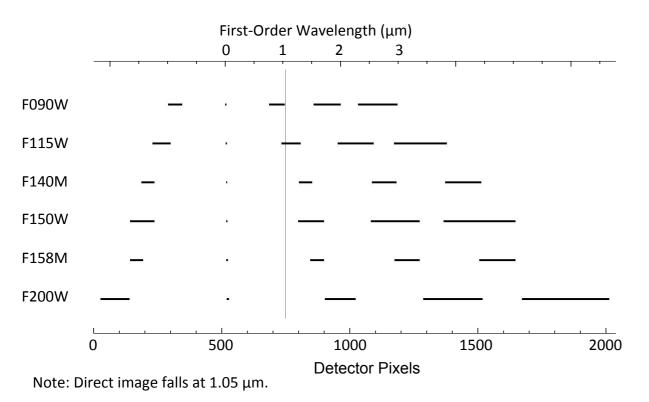
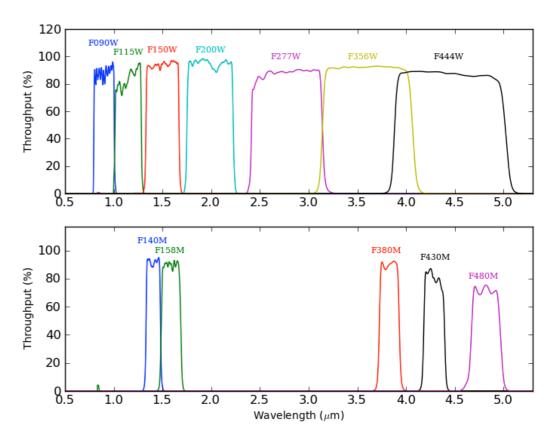




Image: F200W


Spectra: GR150R, F200W


Spectra: GR150C, F200W

NIRISS ON JWST

Layout of Spectral Orders

Filter Transmission Profiles

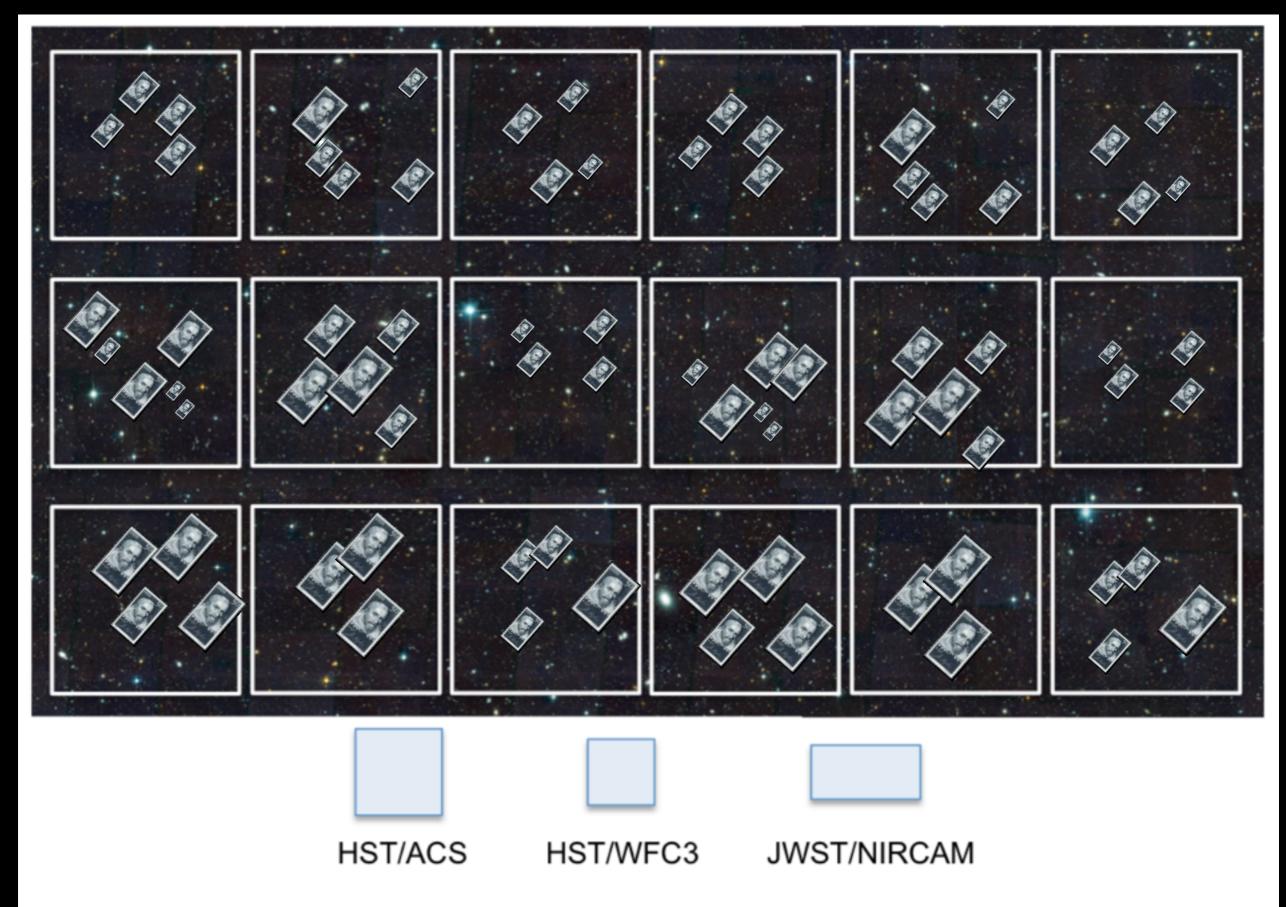


Figure 1-1: Field of view comparison, to scale, of the WFIRST-2.4 wide field instrument with wide field instruments on the Hubble and James Webb Space Telescopes. Each square is a 4k x 4k HgCdTe sensor array. The field of view extent is about 0.79 x 0.43 degrees. The pixels are mapped to 0.11 arcseconds on the sky.

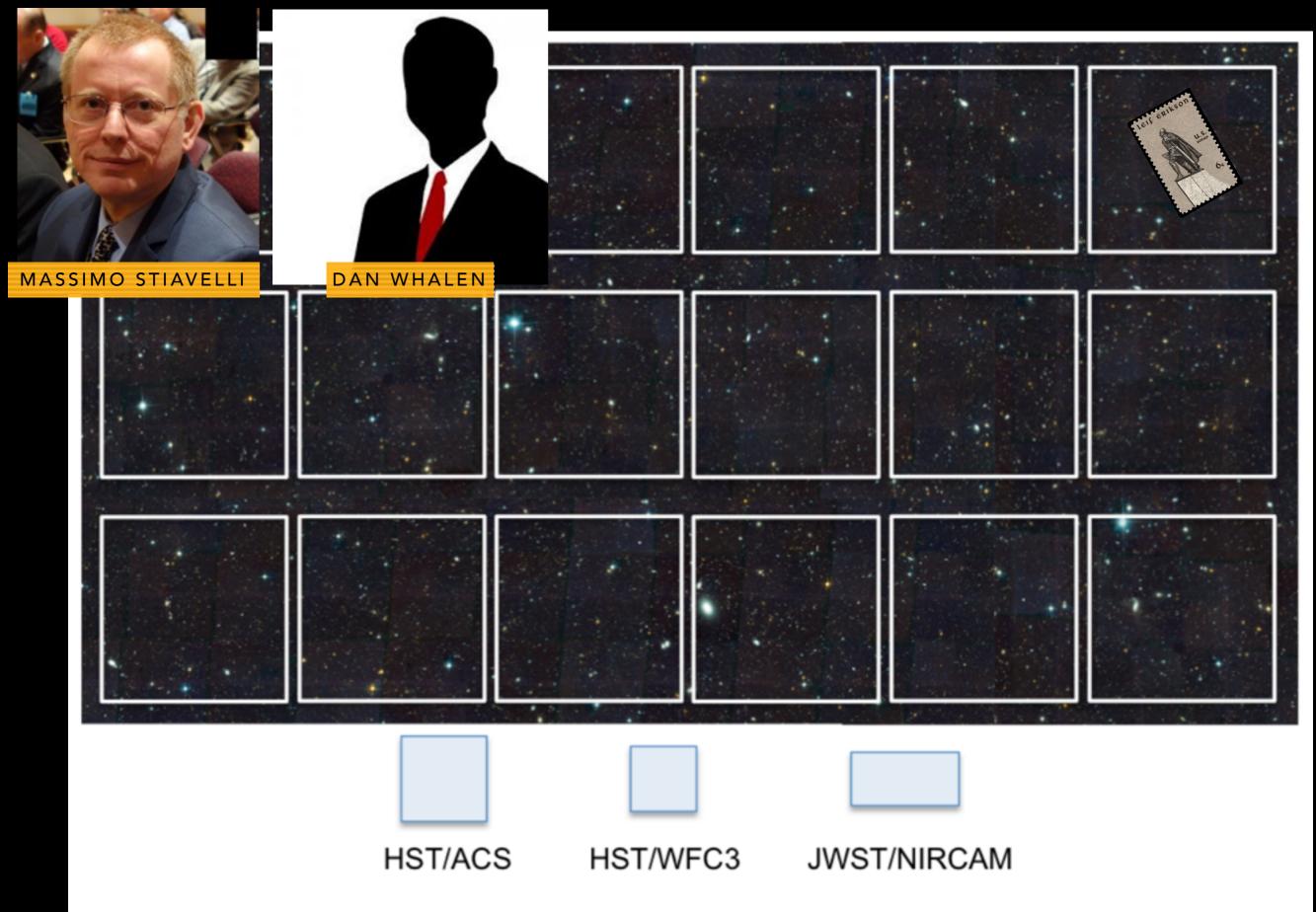


Figure 1-1: Field of view comparison, to scale, of the WFIRST-2.4 wide field instrument with wide field instruments on the Hubble and James Webb Space Telescopes. Each square is a 4k x 4k HgCdTe sensor array. The field of view extent is about 0.79 x 0.43 degrees. The pixels are mapped to 0.11 arcseconds on the sky.

14

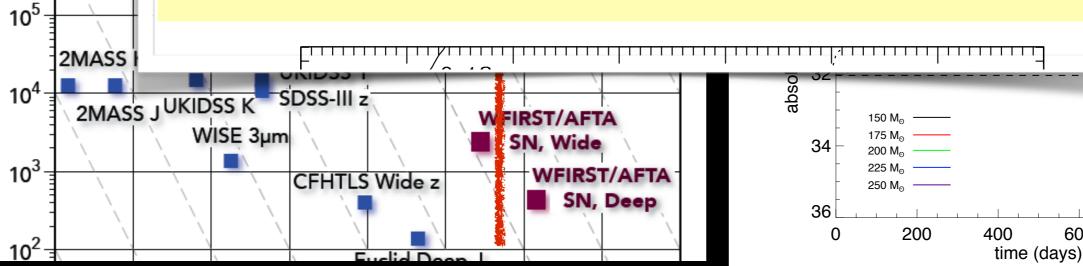
 10^{6}

ees/arcseconds

16

POPULATION III PAIR INSTABILITY SUPERNOVAE

z = 15


800

1000

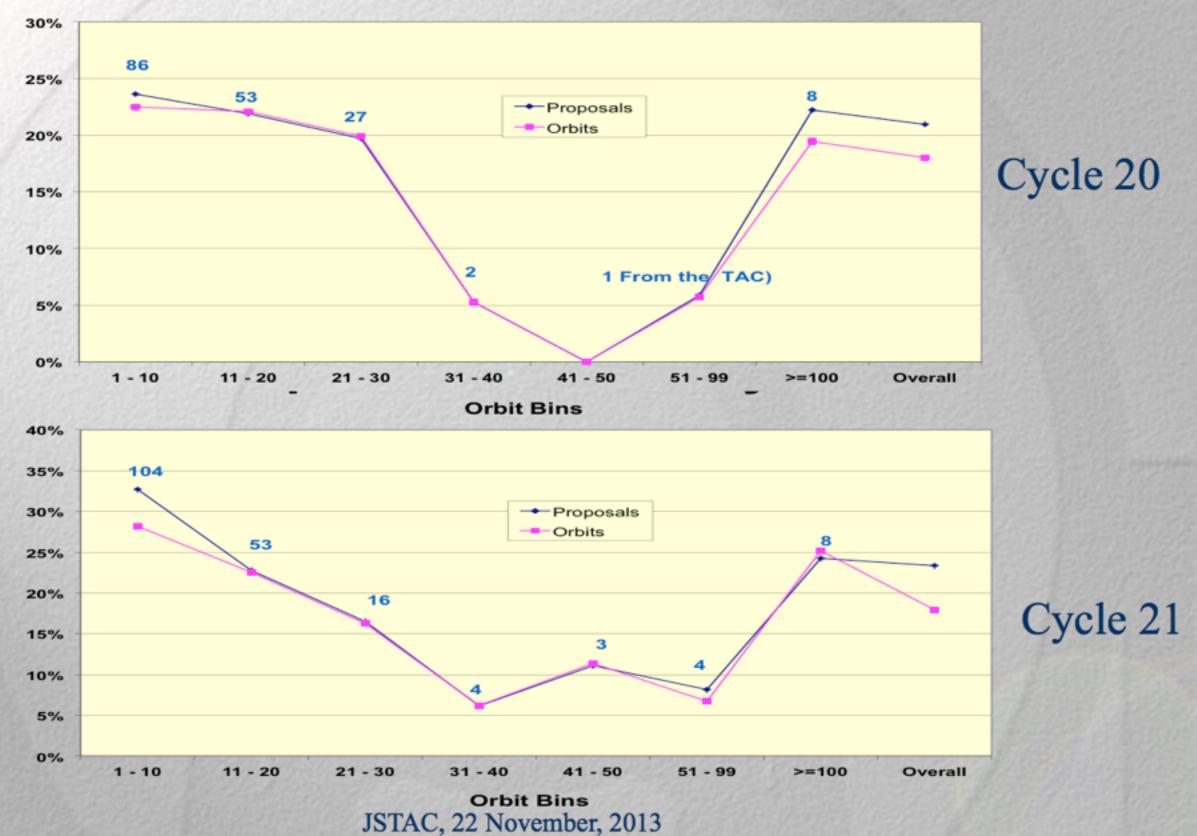
600

Huge variation in predicted rate:

further will also increase $\Delta t_{\rm vis}$, but the gain in $\Delta t_{\rm vis}$ varies as less than the square of the limiting flux (Fig. 2), so the number of SNe discovered is maximized by aiming to detect them within a magnitude or so of maximum, in as many fields as possible. Likewise, the mass-luminosity relation for PISNe is apparently so steep (see, e.g., Wise & Abel 2003) that it is better, in terms of the simple number of SNe to be detected, to aim for the brightest objects near the upper mass cutoff in the largest possible area of sky, rather than to try to probe further down the mass function in fewer fields.

HOW DOES ON DO THE"BEYOND THE LOCAL GROUP" SCIENCE MOST EFFICIENTLY?

COMMUNITY IMPACT


- Analysis of publications from HST programs (Apai et al, 2010, PASP) shows that
 - Small programs produce more papers per orbit, but individual papers have relatively low impact.
 - Large programs produce fewer papers/orbit, but more papers per program, and generally have a higher impact (more citations/ paper).
 - Programs on different scales tackle different scale science questions .
 - Treasury programs have more publications than Large programs.
 - Multi-cycle Treasury programs have the prospect of being more productive that Treasury programs (to be tested).

Credit: N. Reid (STScI) for STUC: 8 May 2014

PRODUCTIVITYOF BIG PROGRAMS

PROGRAM	TYPE	CYCLE	SCIENCE FOCUS	ORBITS	PUBLICATIONS	NOTES
HDF	DD	5	GALAXY EVOLUTION	150	201	IMAGING
PANS	LARGE	11	HIGH-Z SUPERNOVAE	420	4 1	IMAGING
GOODS	TREASURY	11	GALAXY EVOLUTION	398	584	IMAGING
UDF	DD	12	GALAXY EVOLUTION	400	126	IMAGING
COSMOS	TREASURY	13	GALAXY EVOLUTION	590	232	IMAGING
PEARS	TREASURY	14	GALAXY EVOLUTION	200	37	GRISM SPECTRA
UV UDF	LARGE	14	GALAXY EVOLUTION	204	21	IMAGING
DEC_DUST-FREE	LARGE	14	HIGH-Z SUPERNOVAE	219	32	IMAGING
ANGST	TREASURY	15	STELLAR POPULATIONS	218	58	IMAGING
SHOES	LARGE	15	HIGH-Z SUPERNOVAE	208	7	IMAGING
WFC3 ERS	DD	17	STAR FORMATION	214	128	IMAGING, GRISM SPECTRA
UDF09	TREASURY	17	GALAXY EVOLUTION	193	91	IMAGING
3D-HST	TREASURY	18	GALAXY EVOLUTION	248	38	GRISM SPECTRA
РНАТ	МСТ	18-20	STELLAR POPULATIONS	834	28	IMAGING
CANDELS	МСТ	18-20	GALAXY EVOLUTION, SNE	902	158	IMAGING
CLASH	МСТ	18-20	GALAXY CLUSTERS, SNE	524	45	IMAGING
FRONTIER FIELDS	DD	20-21 (22?)	GALAXY CLUSTERS, GALAXY EVOLUTION	560-840	37	IMAGING
SPECTRAL LIBRARY	TREASURY	21	HOT STARS	200	0	SPECTRA
<cycle 14=""></cycle>	LARGE	14	6 PROGRAMS	<245> (874)	<14> (85)	IMAGING
<cycle 14=""></cycle>	TREASURY	14	2 PROGRAMS	<167> (334)	<72> (144)	IMAGING

Into and out of the valley of death

Credit: Neill Reid (STScI)

Red on the left means the facility in the column cannot do it. So if a row is all red then it means it's unique to WFIRST.

Names are omitted. Text is intentionally illegible... don't even try. Just look at the colours.

RE	ED		go	od	G
^{حری} ک	$\hat{c}_{l,\gamma}$	EUCL:	Mr.S.	Offer	
No. Need to resolve stars.	Maybe. Do smail fields in galaxies.	No (need IR, need colors)	Yes, over small areas.	No	
Maybe	No	No	No	No	
No	No-ish. Synergy discussed explicitly.	No - need colors	Yes – but need area for rare populations.	Yes	
No	No	No	No	No. But I'm not super convinced WFIRST can do this either.	
No (need resolution)	No (NO corrected FoV too smell)	No. Need colors to disentagle stellar pops.	Yes. Perfect NIRCam case. Wide FoV requirement not justified in view of OANDELS etc.	No	
No (need resolution)	No (need wide area to find rare objects)	Yes-ish. But benefit from increased resolution	No-ish. Targets are rare and JWST won't get you to thousands.	Yes	
No. Lines are in IR.	are rare.	No. Needs griam.	Yes-ish. Probably can do this with NIRISS in in parallel mode if that is formally supported.	No	
No. Needs resolution.	No. Targets are relatively rare.	***	No	No	
No. Needs resolution.	No. Targets are relatively rare.	Nes -	No	No	
÷.	No.	Yes.	No. Needs wide area.	No	
No. Needs deep IR.	No. Targets relatively ram.	Yes. Need ground-based confirmation of redshifts.	No. Needs wide ara.	High redshift clusters are being found using many other techniques.	
No. Needs deep IR.	No. Targets are relatively rare.	No. Relies on photo z's.	Yes. Targeted follow- ups.	No.	
No.	No	No (needs grism)	Yes. Smaller area though deeper. Probably could gauge outoff z that way as the tangets are pretty abundant.	No	
No (need IR)	No. Targets 20- 100/deg*2	No. Need IR colors	Yes, but quite ineffecient.	No	
No-ish, LSST find them, but hard to tell if lensed.	No	No	No No	No No	
No-ish, LSST will find many nearby, but not any at z>10	No	No	No	No	
No	No	No	*	No	
No	No	No	No	No	
No No	No	No Yes-ish. But WFIRST will be a huge	No	No	
No	No	step up. No	Yes. But WFIRST will allow LF etc to be computed. Probably a bis step up.	No	
No	No	No	big step up. No	No	

GREEN is good

X HLS?

Green means it has that 'X-factor'

Green means it can be done as part of the high-latitude survey so guest observer time would be pointless.

CONCLUSION

 #WFIRST is Sloan in Space disguised as a dark energy mission.