How Large Scale Structure Speaks to Star Formation

Future Insights on *Nurture* from WFIRST-

AFTA Louis Abramson | UChicago // KICP

With great help from:

- Alan Dressler Mike Gladders Gus Oemler
- Bianca Poggianti

Influences on galaxy evolution

- *Nature* internal factors.
 - Mass, morphology/structure, dynamics ...
- Nurture external factors.
 - Environment, mergers ...

Influences on galaxy evolution

- *Nature* internal factors.
 - Mass, morphology/structure, dynamics ...
- Nurture external factors.
 - Environment, mergers ...

Environment

- Environment usually implies overdensity...
- Overdensity usually implies quenching.

http://hubblesite.org/newscenter/archive/releases/2003/01/image/a/ NASA, ESA, ACS Science Team | Benitez, Broadhurst, Ford, Clampin, Hartig, Illingworth

Abel 1689

Dense \Rightarrow dead, for clusters...

Dressler+13

 Spectroscopic passive fractions increase with environmental density.

L. Abramson

WFIRST- $\Lambda \Box T \Lambda$

State of affairs

- Resolved: Environmental density increases fraction of "dead" galaxies.
- At issue: Is it a killer?

Environment rephrased

• A different framework:

Environment is a source of diversity in galaxy star formation histories.

Our approach

- If star formation histories:
 - are differentiated on Hubble timescales (10^{~10} yrs);
 - share the *form* of the cosmic SFH (Madau/Lilly diagram)...
 - Lognormal in time; Gladders+13.
- Then today's Milky Way-mass galaxies grew-up like this:

"Finished" galaxies

- Galaxies need not quench, can simply finish first.
 - Growth is accelera *z* but trajectories are fundamentally similar to startor bring to *x*.
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()

0 12

lookback time

LEA+14c

"Finished" galaxies

Environment's effect

- Might simply **accelerate** galaxy evolution.
 - e.g., Hearin & Watson 13
 - Halo age sets final properties of galaxies in it (e.g., color, SFR).
- Alternatively, it might not.
 - e.g., Newman+14
 - Similar ages for *z* = 1.8 quiescent systems in cluster and field.
- To find out, we need a lot of high-*z* galaxies.
- L. Abramson Most systems growing

17 Nov. 2014

Epoch of galaxy activity

A perfect mission...

- Probes a wide **variety** of (over)densities at an epoch when galaxies in them are still active.
 - 1 < z < 2
- Has uniform **spectroscopic** coverage over large areas.
 - Clean selection function for galaxies and groups pure redshift association; no color/dynamical state bias; no fiber collisions.
 - Reduce cosmic variance issues.
- Digs deep in the mass function and SFR—M_{stel} relation (MW progenitors).
- L. Abramson $SFR \ge 10 M_{\odot} peryr$ WFIRST-

A perfect mission...

...looks like WFIRST!

A perfect mission...

- Probe a wide variety of (over)densities at a epoch where galaxies in them are still actively starforming.
 - 1 < z < 2
- Uniform spectroscopic coverage over large areas.
 - Clean selection function pure redshift association, no color/dynamical state bias.
 - Reduce cosmic variance issues.
- Dig deep in the mass function and SFR—M relation (MW progenitors).
- L. Abramson SFR \geq 10 M_o per yr WFIRST-

High-Latitude and Galaxy Redshift WFC3 F140W Image G141 grism spectra

Dan Masters and the WISPS team

WFIRST-

High-Latitude and Galaxy Redshift WEIRST F140W Image WEIRST grism spectra

Dan Masters and the WISPS team

WFIRST-

More than redshifts

WFIRST-AFTA SDT Final Report

Great for learning about **cosmology**...

WFIRST-

 $\Lambda \Box T \Lambda$

L. Abramson

17 Nov. 2014

Hubble-quality

Not just identification, characterization.

- Spectrophotometric analyses of individual galaxies.
- More than just passive fractions!

Hubble-quality

Not just identification, characterization.

- Spectrophotometric analyses of individual galaxies.
- More than just passive fractions!

Conclusions

- We are on the edge of a revolution in our understanding of environment.
 - Does it kill galaxies, or accelerate aging processes?
- WFIRST-AFTA will herald this revolution.
 - Finding and characterizing an unprecedented number of galaxies in all environments at an epoch in which they are evolving rapidly.
 - First (largely) unbiased assessment of environment.

Availability of large group/cluster samples

Epoch of galaxy activity

Availability of large group/cluster samples

 Massive, relaxed systems: special subset of environments

"Finished" galaxies

• Galaxies need not quench, can simply **finish first**.

L. Abramson

17 Nov. 2014

Availability of large group/cluster samples

Dense \Rightarrow dead, for clusters...

Dressler+13

Clusters at *z* ~ 0.4

L. Abramson

Outline

- Forces shaping gal evo: *Nature* & *Nurture*
 - Nature = mass, dynamics, internal structure, etc.
 - Nurture = **environment**, mergers.
 - Focus on **Nurture** here.
- Used to thinking about environment as "quenching" mechanism.
 - Show various images of clusters / plots of passive fractions.
- Reframe as "sources of **diversity in SFHs**".

How Large Scale Structure Speaks to Star Formation

New Insights on *Nurture* from WFIRST-AFTA

Louis Abramson

UChicago / KICP

With much support from Mike Gladders, Alan Dressler, Gus Oemler, Bianca Poggianti

Linking Large Scale Structure to Star Formation New Insights on *Nurture* from WFIRST-AFTA Louis Abramson UChicago // KICP

With great support from **Mike Gladders, Alan Dressler, Gus Oemler, Bianca Poggianti**