Finding and characterizing young stars (1-100 Myrs) with WFIRST-2.4

David Ardila

The Aerospace Corporation

Questions on star and planet formation

- These old chesnuts...
 - What is the IMF at low masses?
 - How does it depend on local conditions (metallicity, gas density)?
 - What is the epoch of planet formation as a function of mass (stellar mass, planet mass, disk mass)?
- And some new ones...
 - What is the role of dynamical interactions between planets in clearing out the disk and expelling each other?
 - What is the disk composition as a function of stellocentric distance?
 - What is the epoch of planet migration?

Three relevant one-page science ideas

- The Most Distant Star-Forming Regions in the Milky Way (John Stauffer, IPAC)
- Stellar and Substellar Populations in Galactic Star-Forming Regions (Lynne Hillenbrand, Caltech)
- Finding the Closest Young Stars (David R. Ardila, Aerospace)

The Most Distant Star-Forming Regions in the Milky Way (John Stauffer, IPAC)

- Find new young stars at the edge of the Galaxy
- Use them to study star formation in low metallicity environments.
- JH 'K' survey of Galaxy quadrants 2 and 3, ±1 degree off plane.
- Depth: K=19 mag (5sig) to 0.1
 Msun at R(G)=20 kpc
- WFIRST uniqueness:
 - large FOV
 - IR bands
 - depth.

IRAS 06145+1455, the most distant SFR, at R(G)=20.2 kpc. Brand & Weterloot (2007)

Stellar and Substellar Populations in Galactic Star-Forming Regions (Lynne Hillenbrand, Caltech)

- Wide field survey of starforming regions (140-400 pc)
- Probe the substellar mass function near its bottom, over wide areas: M_H=18 mag reaches 1 M_{Jup} at 1 Myr.
- Use grism spectroscopy to provide spectral typing. R=600 is sufficient to type MLTs
- WFIRST uniqueness:
 - Large FOV
 - IR bands
 - Spectroscopy

Young stars near the Sun

Name	Distance	Age	#	
TWA	50±13 pc	10 Myr	≈20	
η/ε Cha	100±9 pc	8 Myrs	≈20	
β Pic MG	30±20 pc	12 Myr	≈30	
Carina	85±35 pc	20 Myr	≈20	
Tuc/ Hor	48±7 pc	30 Myr	≈50	
Argus	106±51 pc	40 Myr	≈10	
Columba	82±30 pc	30 Myr	≈50	
AB Doradus	34±26 pc	70 Myrs	≈30	

Torres et al. (2008)

- Very extended in the sky: M42 at 50 pc would cover 8 deg.
- Few disks and no clouds: A large fraction will not have IR excesses

How to find nearby young objects

Find nearby objects:

- High proper motion
- parallax (spectroscopic, trigonometric).
- WFIRST astrometric precision will be ≈100 mic-as
- Identify nearby objects as young:
 - Make part of a group: Use space motion UVW, colormagnitude diagrams
 - Use age indicators: X-ray, IR excess, accretion, ∑
 Lithium, rotation, etc.
 - Needs follow-up with other facilities
- Multi-archive, multi-diagnostic, "big-data" approaches:
 - SACY Search for Associations Containing Young stars (Torres et al.2003).
 - BANYAN Bayesian Analysis for Nearby Young Associations (Gagne et al. 2014). X-rays, proper motions, parallaxes, UVWs, etc

Zuckerman & Song (2004)

WFIRST unique strengths

- Large FOV
- For low mass objects, NIR colors give spectral type and surface gravity.
- WFIRST can find very low-mass objects:
 - At 50 pc: For 10 Myrs, the substellar boundary is at \approx M6, m_H \approx 11.5 mags.
 - Y0 dwarf is at $m_H(AB) \le 25.5$ mags

By the time WFIRST rolls around we will have GAIA (eq. 1 m telescope)

- Final GAIA data release in 2022
- WFIRST can provide color and spectroscopic confirmation, and extend to lower mass members.

M6 at 50 pc

V magnitude	6 - 13	14	15	16	17	18	19	20	mag
Parallax	8	13	21	34	55	90	155	275	μας
Proper motion	5	7	11	18	30	50	80	145	µas/an
Position @2015	6	10	16	25	40	70	115	205	μας

GAIA specs, de Bruijne, (2013)

Once we find them, then what? Coronagraphic imaging and analysis

HP11995469AD409Qp.p.c1110NMyrr. HST/ AGSLN9421(Ardila et la la 2014) TW Hya, K6, 50 pc, 10 Myr. NICMOS data (Debes et al. 2013)

Survey of Circumstellar Disks *Hubble Space Telescope* • STIS

State of the art coronography from space

Debris disks with STIS, Schneider et al. (2014) IWA: r≈0.3"

WHITE LIGHT!
Color/spectroscopic
information is crucial to
fully exploit the power
of coronagraphic
images.

NASA and ESA STScI-PRC14-44a

Coronagraph: more than pretty pictures

- Color, scattered light observations
 - measure the amount of smallest dust particles
 - Provide information on the disk profile.
 - Constrain the composition and grain evolution within the disk

In Conclusion

- WFIRST will have a strong impact in the study of star and planet formation 1-100 Myrs
- Large FOV, IR colors and spectroscopy allow for efficient finding and characterization of young stars, near and far
- Color Coronography will revolutionize the study of planet formation.