High Precision Photometry+Astrometry for Microlensing from Space

David Bennett University of Notre Dame

with help from Jay Anderson and Aparna Bhattacharya

The Physics of Microlensing

- Foreground "lens" star + planet bend light of "source" star
- Multiple distorted images
 - Only total brightness change is observable
- Sensitive to planetary mass
- Low mass planet signals are rare – not weak
- Stellar lensing probability ~a few ×10⁻⁶
 - Planetary lensing probability ~0.001-1 depending on event details
- Peak sensitivity is at 2-3 AU: the Einstein ring radius, R_E

Key Fact: 1 AU
$$\approx \sqrt{R_{Sch}R_{GC}} = \sqrt{\frac{2GM}{c^2}R_{GC}}$$

Microlensing Demands Crowded Galactic Bulge Fields

Lensing rate /area ~ (# of source stars)×(# of lens stars)

- Faint main sequences sources needed to detecting low-mass planets
- At separations $< R_E$, planetary signals occur at low stellar magnification
- Matthew Penny's talk from yesterday

low-mass planet signals are rare and brief, *if solar-type sources can be monitored!* but not weak

Space Imaging Resolves Source+Lens from Other Stars

HST J-band

- Bulge main sequence stars not resolved in seeing limited images
- WFIRST fields should be 2× more crowed
- Flatter luminosity function in the IR adds to crowding

Galactic bulge photometry in the IR

Most stars are not completely blended, but the images overlap.

High precision photometry (~1 mmag) needed with overlapping images

Proper motion of neighbors must be accounted for:

Precision photometry requires precision astrometry

Microlensing Survey Stars Will Not Be Isolated

- Proper motion of neighboring stars will contribute to photometry noise
- We need astrometry information for our determination of host star properties
- We want a WFIRST-AFTA exoplanet microlensing pipeline that generates
 - Photometry
 - Astrometry
 - A catalog of detector defects
- PSF-fitting photometry similar to Jay Anderson's code for HST

Microlensing Survey Stars Will Not Be Isolated

- Proper motion of neighboring stars will contribute to photometry noise
- We need astrometry information for our determination of host star properties
- We want a WFIRST-AFTA exoplanet microlensing pipeline that generates
 - Photometry
 - Astrometry
 - A catalog of detector defects

 Develop exoplanet microlensing photometry+astrometry pipeline pre-launch using HST/WFC3/IR data

Crowded Field Photometry

- PSF fitting photometry
 - not optimal for ground-based microlensing because we can't locate individual stars
- Difference image photometry (DIA)
 - Target star location clear from isolated signal in difference image
- WFIRST differs because
 - Very stable PSF (much better than HST)
 - Proper motion effects are large
 - Standard DIA not likely to be accurate
 - PSFs in W149 filter are color-dependent
 - Strong parallax effects between spring and fall seasons
- PSF fitting photometry is likely optimal
 - but should include proper motions, parallax and color dependent PSF
 - Jay Anderson's HST analysis code is a good starting point

WFIRST Microlensing Pipeline

- Solve for photometry, color, and astrometry (proper motion and parallax) of each star
 - Also, search for "new" stars
- Solve for detector effects, and their change in time
 - detector radiation effects
 - temperature effects
 - changing hot pixels
 - PSF shape changes
- What calibration data are needed by other programs?
- Microlensing pipeline can likely be used for a calibration field in the LMC, which is observable at anytime

Extraction of Exoplanet Parameters: Part 1

Planets are revealed as short-duration deviations from the smooth, symmetric magnification of the source due to the primary star.

Detailed fitting to the photometry yields the parameters of the detected planets.

- Einstein radius : $\theta_{\rm E} = \theta_* t_{\rm E} / t_*$ and projected Einstein radius, $\tilde{r}_{\rm E}$
 - θ_* = the angular radius of the star
 - $\tilde{r}_{\rm E}$ from the microlensing parallax effect (due to Earth's orbital motion).

$$R_E = \theta_E D_L$$
, so $\alpha = \frac{\tilde{r}_E}{D_L} = \frac{4GM}{c^2 \theta_E D_L}$. Hence $M = \frac{c^2}{4G} \theta_E \tilde{r}_E$

Part 2: Finite Source Effects & Microlensing Parallax Yield Lens System Mass

Lens Detection Provides Complete Lens Solution

- The observed brightness of the lens can be combined with a mass-luminosity relation, plus the mass-distance relation that comes from the μ_{rel} measurement, to yield a complete lens solution.
- The resulting uncertainties in the absolute planet and star masses and projected separation are shown above.
- Multiple methods to determine μ_{rel} and masses (such as lens star color and microlensing parallax) imply that complications like source star binarity are not a problem.

Lens-Source Proper Motion is Needed

- Formally, we can get the lens mass with finite source radius, t_{*}, and lens brightness (say, combined flux – source flux from model), BUT
- The source may have a binary companion, or a unrelated star may be blended with the source
 - Lens-source proper motion verifies the lens star ID
 - Multi-color observations exclude companion to the lens
- Microlensing Parallax measurements are often 1dimensional
 - But, the parallax vector is parallel to μ_{rel} , so a relative proper motion measurement sharpens a microlensing parallax measurement

Finite Source Effects & Microlensing Parallax Yield Lens System Mass

- If only θ_E or \tilde{r}_E is measured, then we have a mass-distance relation.
- Such a relation can be solved if we detect the lens star and use a mass-luminosity relation
 - This requires HST or ground-based adaptive optics
- With θ_E , \tilde{r}_E , and lens star brightness, we have more constraints than parameters

mass-distance relations:

MOA-2009-BLG-266 Orbital Parallax

Lens-Source Relative Proper Motion

- Lens and source are not resolved at the time of the microlensing event
- 2 methods to measure $\mu_{\rm rel}$:
 - Color Dependent Centroid shift
 - If lens and source have different colors, the centroid of the blended image will depend on the color
 - Precision scales as *t*
 - Image Elongation:
 - Blended image will be elongated in the $\mu_{\rm rel}$ direction
 - works if lens and source have the same color
 - Precision scales as t^2
 - In practice, fit for lens and source location with constraints from light curve model

Color Dependent Image Center Shift

Source & Planetary Host stars usually have different colors, so lenssource separation is revealed by different centroids in different passbands

HST Observation Predictions for OGLE-2003-BLG-235L/MOA-2003-BLG-53L

Fraction of total flux due to lens star.

Centroid Shift between HST-ACS/ HRC passbands for follow-up images. (Units are 25 mas pixels.)

Relative proper motion μ_{rel} = 3.3±0.4 mas/yr from light curve analysis (μ_{rel} = θ_*/t_*)

Predicted Image Elongation

- Lens-source proper motion gives $\theta_E = \mu_{rel} t_E$
- μ_{rel}= 8.4±1.7 mas/yr for OGLE-2005-BLG-169
- Simulated HST ACS/HRC F814W (*I*-band) single orbit image "stacks" taken 2.4 years after peak magnification
 - 2× native resolution
 - also detectable with HST WFPC2/PC & NICMOS/NIC1
- Stable HST PSF allows clear detection of PSF elongation signal
- A main sequence lens of any mass is easily detected (for this event)

Simulated HST images:

raw image

PSF subtracted

binned

First Confirmation of a Planetary Microlensing Signal

- μ_{rel} measured by HST (and Keck)
- Image elongation

See talk by Aparna Bhattacharya (next!)