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The Physics of Microlensing

» Foreground “lens” star +
planet bend light of “source”
star

* Multiple distorted images
— Only total brightness change
is observable
» Sensitive to planetary mass

* Low mass planet signals are
rare — not weak

 Stellar lensing probability
~a few x10-6
— Planetary lensing probability
~0.001-1 depending on
event details
* Peak sensitivity is at 2-3 AU:
the Einstein ring radius, R¢

2GM
Key Fact: 1 AU =R, R, = \/—2R
C




Microlensing Demands Crowded
Galactic Bulge Fields

Galactic center 8 kpc Sun

, 1-7 kpc from Sun ,

Light curve
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Source star Lens star
and images and planet Telescope

Lensing rate /area ~ (# of source stars)x(# of lens stars)



Close (HZ) Planets Found at Low Magnification
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« Faint main sequences sources needed to detecting low-mass planets
At separations < R, planetary signals occur at low stellar magnification
« Matthew Penny’s talk from yesterday



How Low Can We G072 ot oarces
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(Bennett & Rhie 1996)

For O = 6. : Mars-mass planets detectable
low-mass planet signals are rare and brief, if solar-type sources can be monitored!
but not weak

angular source star radius



Space Imaging Resolves Source+Lens from
Other Stars

HS P -hand

« Bulge main sequence stars not resolved in seeing limited images
« WFIRST fields should be 2x more crowed
 Flatter luminosity function in the IR adds to crowding



Galactic bulge photometry in the IR

HST J-band

Most stars are not
completely blended,
but the images
overlap.

High precision
photometry (~1 mmag)
needed with
overlapping images

Proper motion of
neighbors must be
accounted for:

Precision photometry
requires precision
astrometry




Space vs. Ground Sensitivity

Exoplanet Discovery Potential
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Microlensing Survey Stars Will Not Be Isolated

* Proper motion of neighboring stars will contribute to
photometry noise
* We need astrometry information for our determination of
host star properties
« We want a WFIRST-AFTA exoplanet microlensing pipeline
that generates
* Photometry
» Astrometry
A catalog of detector defects

« PSF-fitting photometry — similar to Jay Anderson’s code for
HST



Microlensing Survey Stars Will Not Be Isolated

* Proper motion of neighboring stars will contribute to
photometry noise
* We need astrometry information for our determination of
host star properties
« We want a WFIRST-AFTA exoplanet microlensing pipeline
that generates
* Photometry
» Astrometry
A catalog of detector defects

* Develop exoplanet microlensing photometry+astrometry
pipeline pre-launch using HST/WFC3/IR data



Crowded Field Photometry

PSF fitting photometry

— not optimal for ground-based microlensing because we can’t locate
individual stars

Difference image photometry (DIA)
— Target star location clear from isolated signal in difference image

WFIRST differs because
— Very stable PSF (much better than HST)

— Proper motion effects are large
» Standard DIA not likely to be accurate

— PSFs in W149 filter are color-dependent
— Strong parallax effects between spring and fall seasons

PSF fitting photometry is likely optimal

— but should include proper motions, parallax and color dependent PSF
— Jay Anderson’s HST analysis code is a good starting point



WFIRST Microlensing Pipeline

Solve for photometry, color, and astrometry (proper
motion and parallax) of each star

— Also, search for “new” stars
Solve for detector effects, and their change in time
— detector radiation effects
— temperature effects
— changing hot pixels
— PSF shape changes
What calibration data are needed by other programs?

Microlensing pipeline can likely be used for a calibration
field in the LMC, which is observable at anytime



Extraction of Exoplanet Parameters: Part 1
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Detailed fitting to the photometry
yields the parameters of the
detected planets.

Planets are revealed as short-duration
deviations from the smooth, symmetric
magnification of the source due to the

primary star.
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~__ Lens System Properties

observer\

« Einstein radius : 6z= 6.t-/t. and projected Einstein radius,
— 6. = the angular radius of the star
— I from the microlensing parallax effect (due to Earth’s orbital motion).

. AGM o
R, =60.D,, so a= E . .Hence M = C—HErE
D, c¢6.D, 4G




Part 2: Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

Sourc

e Finite source effect
or lens-source proper motio

Angular Einstein radius 6=0.t;/t.
6. = source star angular radius

0

lens

D, and D are the lens and source distances

source—_
 Microlensing Parallax
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Lens Detection Provides Complete
Lens Solution

LA 1
- All Detections (Main Sequence) -
- Planet Mass to 20% -

L I B I B )

M/M,
« The observed brightness of the lens can be combined with a mass-luminosity
relation, plus the mass-distance relation that comes from the u,
measurement, to yield a complete lens solution.
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* The resulting uncertainties in the absolute planet and star masses and
projected separation are shown above.

* Multiple methods to determine u,, and masses (such as lens star color and
microlensing parallax) imply that complications like source star binarity are
not a problem.



Lens-Source Proper Motion is Needed

« Formally, we can get the lens mass with finite source
radius, t., and lens brightness (say, combined flux — source
flux from model), BUT

* The source may have a binary companion, or a unrelated
star may be blended with the source
— Lens-source proper motion verifies the lens star ID
— Multi-color observations exclude companion to the lens

« Microlensing Parallax measurements are often 1-
dimensional

— But, the parallax vector is parallel to y,,, so a relative proper motion
measurement sharpens a microlensing parallax measurement



Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

* If only 6 or ;. is measured,
then we have a mass-distance
relation.

« Such a relation can be solved if
we detect the lens star and use
a mass-luminosity relation

—This requires HST or ground-based
adaptive optics

* With 6, ., and lens star
brightness, we have more
constraints than parameters

mass-distance relations:
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The bulge is near the ecliptic plane so
parallax uncertainty is asymmetric



Lens-Source Relative Proper Motion

 Lens and source are not resolved at the time of the
microlensing event

* 2 methods to measure y.:

— Color Dependent Centroid shift

 If lens and source have different colors, the centroid of
the blended image will depend on the color

* Precision scales as ¢
— Image Elongation:
» Blended image will be elongated in the p., direction

» works if lens and source have the same color
e Precision scales as 2

— In practice, fit for lens and source location with constraints
from light curve model



Color Dependent Image Center Shift

OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star HST = ACS/HRC
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NASA, ESA, D. Bennett (University of Notre Dame), and J. Anderson (Rice University) STScl-PRC06-38b

Source & Planetary Host stars usually have different colors, so lens-
source separation is revealed by different centroids in different passbands




HST Observation Predictions for
OGLE-2003-BLG-235L/MOA-2003-BLG-53L
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Relative proper motion u. = 3.3+0.4 mas/yr
from light curve analysis (u,,= 6./t.)



Predicted Image Elongation

Simulated HST images:

» Lens-source proper motion
giVGS eE = :ureItE

* U= 8.4%1.7 masl/yr for
OGLE-2005-BLG-169

» Simulated HST ACS/HRC
F814W (/-band) single orbit
image “stacks” taken 2.4
years after peak
magnification

— 2x native resolution
— also detectable with HST
WFPC2/PC & NICMOS/NIC1

« Stable HST PSF allows clear
detection of PSF elongation
signal

« A main sequence lens of any
mass is easily detected (for
this event)

raw image PSF subtracted binned



First Confirmation of a Planetary
Microlensing Signal

* M., measured by HST (and Keck)
* Image elongation

See talk by Aparna Bhattacharya (next!)



