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Outline

The far-ultraviolet and galaxy star formation histories

Characterizing physical conditions within nearby galaxies



To interpret higher z data, need similar rest-frame low z data
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FUV data are extremely helpful in constraining galaxy SFH

Marcum+01
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FUV data are extremely helpful in constraining galaxy SFH

Marcum+01
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FUV data crucial
for constraining
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FUV data crucial
for constraining
SFH
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MIRAGE simulations of 1<z<2 main sequence galaxies
c__ ~0.3(SFR)

SFR
SFRs extracted using common recipes

Classical SFRs overestimate by 25% (FUV) to 65% (U)
— Increasing accumulation of longer-lived stars

Perret+14
Boquien+14




Deep multi-A photometry provides ,
spatially-resolved SFH for nearby :

galaxies, even in the outskirts ' '
where mergers are evident !

Spitzer 3.6um
1800 s/pix R
EDGES survey

van Zee+12 '
Barnes+14




Radial age gradients in
NGC4490
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1800 s/pix
EDGES survey
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Relative residual flux
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Radial age gradients in NGC4490
Delayed SF: SFR(t) u t exp(-tit)
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CALIFA survey: 600 galaxies; 74”"x64” IFU

Gonzalez-Delgado+14
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Inner age gradients for massive disk galaxies
Flat age profiles for low-mass disks and ellipticals



IFUs excellent tools for characterizing the physical
conditions across a galaxy disk

Single pointing studies miss out on discoveries (XUV disks)

IFUs on 8-10 meter telescopes can probe more than just
bright HIl regions in nearby galaxies
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Holmberg 2

NGC 1569

He2-10

‘.rﬂ“

Hong+13 shock regions
zZ >Z

NGO 4449

NGC 4214

Example IFU application
ripe for study: Diffuse
lonized Gas which
accounts for 30-50% of

total Ho

What powers DIG?
 Hil leakage (<50%)
 Diffuse SF

 Shocks

Hoopes & Walterbos 2003
Martin & Kennicutt 1997
Hong et al. 2013

20-10° Ho emitters!
2-10° [O1]




If the additional DIG arises from diffuse SF, then how
are gas outflows powered?

If there is a transition between diffuse SF and shocks In
dominating the heating of the DIG, when does it occur?

Are the shocks enough to explain recipes for the SK
Law that decouple the small scale to the large scale?
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Summary

Deep imaging, especially higher res FUV, on younger
stellar populations in nearby galaxies would be a key
complement to WFIRST data on older stellar populations.

— better understand detailed star formation histories
— higher resolution ancillary best leverages WFIRST

Precursor or follow-up observations with optical IFUs on
8-10 m telescopes would be important for more fully
understanding physical conditions across galaxy disks.
— better understand widespread presence of outflows
In distant galaxies




Quasars at moderate redshift

Quasars peak in abundance near z~2-3 so science that requires a high
number density of quasars should target this redshift range

z~2-3 quasars may be best way to determine fne and other subtle large-scale
clustering features because they probe such large volumes (Ho+14; Leistedt+14)

Quasar studies near the major era of proposed feedback mechanisms help
constrain models of galaxy evolution via the distribution of quasars themselves

(White+12) or by studying correlations between quasars and cosmic backgrounds
(Viero+14; Wang+14)

Rare, close quasar pairs are useful for using the background guasar to trace
the foreground quasar in absorption to study quasar environments, outflows,
the Transverse Proximity Effect, etc. (Hennawi+13; Prochaska+14)

At lower redshift, characterizing black hole accretion modes using
guasars and galaxies in overlapping redshift ranges (z~1) by measuring the
host dark matter halos of quasars as a function of Eddington rate (Shen+13)



Quasars at moderate redshift

A topical question is the fraction of quasars that are faint or missing in current
optical surveys because they are behind galactic-scale dust (which would
obscure the broad and narrow line region in the optical) or a torus of dust
around the central engine (which would obscure only the broad line region).

In particular, mid-IR(WISE)+optical selection finds both obscured and
unobscured quasars over 0.5 < z <5 and perhaps beyond (Hickox+07, Stern+12,
Assef+13, Yan+13) and the WFIRST grism survey, in being blind and deep, should
finally characterize the nature of these sources.
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The utility of the WFIRST grism

At z > 2 quasar distances based on broad-line redshifts may be systematically
Incorrect by ~200 km s as well as scattered by ~500 km s (Font-Ribera+14)

The WFIRST grism (1.35 - 1.95um) should identify the systemic [OI111]5007
over 1.7 <z < 2.9, directly calibrating high-z quasar redshifts
In large samples for the first time

The most trusted line for measuring black hole masses for quasars is H34863
which the WFIRST grism should directly characterize over 1.8 <z < 3.0

Similarly, the redshifts for partially obscured quasars, or quasars for which
the broad line region is fully obscured, at 2 < z < 3 can be determined using
[Olll] and/or HP (typically, by definition, obscured quasars have very weak or
completely absent lines in the optical)



Energy-balanced SED fitting (e.g., CIGALE Noll+09; Serra+11)

da Cunha+08
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Figure 9. Spectral evolution of the standard SSP model of Section 3 for
the solar metallicity. The STELIB/BaSeL 3.1 spectra have been extended
blueward of 3200 A and redward of 9500 A using the Pickles medium-
resolution library. Ages are indicated next to the spectra (in Gyr).




Simulated R~70

NGC5548 NGC4051
HB ~ 10,000 km/s - HP ~ 1,600 km/s
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