

THE VVV SURVEY:

CHARTING THE MILKY WAY'S BULGE AND DISK

István Dékány

Millennium Institute for Astrophysics, Santiago, Chile

Pontificia Universidad Católica de Chile

VVV: VISTA Variables in the Vía Láctea

Near-IR time-domain photometric survey of the Galactic bulge and inner disk

PI: Dante Minniti, Chile co-PI: Philip Lucas, UK

VVV: VISTA Variables in the Vía Láctea

Near-IR time-domain photometric survey of the Galactic bulge and inner disk

PI: Dante Minniti, Chile co-PI: Philip Lucas, UK

VVV: 520 square degrees

2000 hours

7 years

VVV: 520 square degrees

2000 hours

7 years

ZYJHKs atlas (single epoch) up to ~100 epochs in Ks 1 billion objects, 1 million variables

VVV: the *first* and *only* near-IR time-domain survey of the bulge and southern disk

VISTA (Visible and Infrared Survey Telescope for Astronomy)

4.1 m telescope

f / 3.25

1.5 sq. deg. FOV

VIRCAM (VISTA InfraRed Camera)

Data Volumes produced by CASU

VVV AND 2MASS

VVV builds on the 2MASS legacy: Science cases given by 2MASS

WFIRST can build on the VVV legacy: Science cases from VVV

VVV is calibrated by 2MASS VVV system != 2MASS system

VVV AND 2MASS

Main differences with 2MASS

2MASS covers the whole sky, VVV only 1.3%

VVV has higher resolution (0.34"/pix)

Main differences with 2MASS

2MASS covers the whole sky, VVV only 1.3%

VVV has higher resolution (0.34"/pix)

VVV is deeper (Ks<18)

VVV AND 2MASS

Main differences with 2MASS

2MASS covers the whole sky, VVV only 1.3%

VVV has higher resolution (0.34"/pix)

VVV is deeper (Ks<18)

VVV AND 2MASS

Main differences with 2MASS

2MASS covers the whole sky, VVV only 1.3%

VVV has higher resolution (0.34"/pix)

VVV is deeper (Ks<18)

VVV has 5 filters (ZYJHKs)

VVV is a time-domain survey (in Ks)

WW Goal

What is the 3-D structure of the Milky Way

WW Goal

How did it form

VVV 0.3M SINGLE TILE BULGE CMD

VVV 84M STARS BULGE CMD

WFIRS2014 Conference

EXTINCTION MAP

O. Gonzalez, et al. A&A 2012, B. Chen et al. A&A 2013

EXTINCTION MAP

O. Gonzalez, et al. A&A 2012, B. Chen et al. A&A 2013

METALLICITY MAP

O. Gonzalez, et al. A&A 2012

A double red clump is seen along different directions towards the bulge. This is present in 2MASS and VVV data.

Saito et al. 2011, AJ

The Milky Way bulge is X-shaped.
Two independent datasets and analyses (2MASS, VVV).

Saito et al. 2011, AJ

The Milky Way bulge is X-shaped.
Two independent datasets and analyses (2MASS, VVV).

The peanut-shaped bulge formed from the disk via buckling instability.

theory: see, e.g., Wegg & Gerhard (2013)

Red clump (RC) and RR Lyrae stars trace different populations.

Pietrukowicz et al. 2012, ApJ

Zoccali et al. 2008, A&A Gonzalez et al. 2011, A&A

Combined OGLE + VVV (I + Ks) distance analysis of bulge RR Lyrae stars.

Advantage: accurate distances and reddenings on a star-by-star basis by precise PL-relations.

Dékány et al. 2013, ApJL

Combined OGLE + VVV (I + Ks) distance analysis of bulge RR Lyrae stars.

Advantage: accurate distances and reddenings on a star-by-star basis by precise PL-relations.

Dékány et al. 2013, ApJL

Combined OGLE + VVV (I and Ks) distance analysis of bulge RR Lyrae stars.

Advantage: accurate distances and reddenings on a star-by-star basis by precise PL-relations.

Dékány et al. 2013, ApJL

Up next: extended I+Ks analysis of OGLE-IV sample. Near-IR data extraction almost complete.

Up next: explore the rest with VVV. Challenge: identifying RR Lyrae n the near-IR. Time-series analysis underway, automatic classifier ready.

Soszynski et al. (2014)

The old (> 10 Gyr) bulge is not X-shaped and not even barred. The Milky Way has a composite bulge:

BOXY PEANUT + SPHEROID

The MW formed first inside-out, then grew a boxy peanut shaped bulge.

Samland & Gerhard 2003, A&A Obreja et al. 2013, ApJ Saha & Gerhard 2013, MNRAS

THE GREAT DARK LANE

A split red clump is seen along the reddening vector towards the bulge.

66 million stars

Minniti et al. 2014, A&A

A split red clump is seen along the reddening vector towards the bulge.

small field at the dark lane's edge

Minniti et al. 2014, A&A

NGC1365: two nested bars with two arms

HST OPTICAL

•••••

THE GREAT DARK LANE

RR Lyrae distance-reddening distribution: the Great Dark Lane is indeed real.

Dékány et al. (in prep.)

THE GREAT DARK LANE

RR Lyrae distance-reddening distribution: the Great Dark Lane is NOT in the bulge.

Sample is limited in short distances, but gives an upper limit of ~6 kpc for the Dark Lane's distance.

Dékány et al. (in prep.)

Velocity mapping (HI, HII, CO, masers, ...)
Drawback: kinematic assumptions, blind towards GC, GAC

Hou et al. (2009, A&A)

Stellar tracers (Cepheids, YOC, OB stars, ...)

Drawback: limited to near side

DDO Cepheid database

Stellar tracers (Cepheids, YOC, OB stars, ...)

Drawback: limited to near side

BUT: VVV

DDO Cepheid database

VVV Galactic Cepheid Program (VGCP): up to A(V)~50

SO FAR:

analysis of ~35 million light-curves in -2° < b < 2° , -70° < I < 10°

~5 % of the low-latitude are searched for Cepheids

~400 candidates found

problem: confusion with type II Cepheids (due to near-IR light-curves)

solution: spectroscopic follow-up

~80 best targets proposed for FIRE/Baade, X-Shooter/VLT

VGCP Proof of Concept: The Twin Cepheids

separation = 18.3"
b=0°
A(Ks)=3.2 mag, A(V)=32 mag
d=11.4 kpc
< 1pc from the Galactic plane
must be type I
must be in OC

Dékány et al. (2014, ApJL, submitted)

VGCP Proof of Concept: The Twin Cepheids

Dékány et al. (2014, ApJL, submitted)

VGCP Proof of Concept: The Twin Cepheids

Dékány et al. (2014, ApJL, submitted)

VGCP: prospects

VGCP: prospects

VVV AND MICROLENSING

VVV was originally not designed for ML.

BUT: high-cadence program has been proposed for the inner bulge

VVV will search for reddened bulge microlensing events, and produce a map of the optical depth, tracing the 3D bulge mass distribution.

The near-IR advantage:

I, J and Ks-map event rates for sources with K<17.

Contours = 17.5, 35, 52.4 per sq.deg. per year.

E. Kerins et al. (2008)

Candidate Microlensing events from the VVV Survey

serendipitous discoveries
proof of concept that allows us to explore the parameter space covered and plan
future strategies
complementary to optical surveys

István Dékány, Dante Minniti, Roberto Saito: ML search Eamonn Kerins: DIA pipeline development

N>200

Minniti, Dekany et al. (2014, A&A, submitted)

VVV AND MICROLENSING

VVV AND WFIRST

VVV: the *first* and *only* near-IR time-domain survey of the bulge and southern disk

This provides basic synergies with WFIRST:
VVV is pioneering for WFIRST
VVV lets us learn now how to use massive Galactic data
VVV prepares us to surf the WFIRST data tsunami

VVV for WFIRST:

provide science cases input catalogs for followup

extended time baseline QSOs extended ML timescale

WFIRST for VVV:

recalibration deblending more epochs