Dark Energy Progress Report

Shirley Ho
Carnegie Mellon University
WFIRS2014 conference, Pasadena, 2014
Outline

• Brief revisit to Models of Dark Energy
• What each of the following probe have told us:
 – Lensing
 – Cluster
 – CMB
 – SN
 – BAO

Image: Robert Lupton & SDSS
Dark Energy Models

- LCDM
- Equation of State
- Dark Energy density
- Dark Energy interacting with Dark Matter
- Decaying Dark Energy
Dark Energy Models

What do we know about these models?

BOSS collaboration 2014
Outline

• Brief revisit to Models of Dark Energy

• What each of the following probe have told us:
 – Cluster
 – Lensing
 – CMB
 – SN
 – BAO

Image: Robert Lupton & SDSS
Dark Energy Progress

• Cluster

Vikhlinin et al. 2008

36 clusters from Chandra
Dark Energy Progress

- Gravitational Lensing

SDSS-DR7 lensing + WMAP7 + SDSS clustering

Mandelbaum et al. 2012
Figure 4. Hubble diagram for the Union2.1 compilation. The solid line represents the best-fit cosmology for a flat ΛCDM Universe for supernovae alone. SN SCP06L4 falls outside the allowed σ_1 range and is excluded from the current analysis. When fit with a newer version of SALT2, this supernova passes the cut and would be included, so we plot it on the Hubble diagram, but with a red triangle symbol.
Dark Energy Progress

- Supernova

Suzuki et al. 2012

SN+
WMAP7+
BAO (SDSSI/II+2dF)
Dark Energy Progress

• CMB

Planck Collaboration 2013
Dark Energy Progress

- Planck +
- WMAP polarization+
- BOSS 1st year data
Dark Energy Progress

- BAO
- BOSS DR11 (near final)
- Same Acoustic Oscillations as in CMB

BOSS galaxy clustering WG + BOSS collaboration 2013
Dark Energy Progress

• BAO
• BOSS DR11 (near final)
• Distance measurement at
 of 1% at $z=0.57$ and
 2.1% at $z=0.32$

BOSS galaxy clustering WG +
BOSS collaboration 2013
Dark Energy Progress

- BAO constraints on Dark Energy

![Graph showing BAO constraints on Dark Energy]

BOSS galaxy clustering WG+
BOSS collaboration 2013
Dark Energy Progress

• Combining all BAO measurements

Lines are Planck LCDM model predictions

BOSS collaboration 2014
Dark Energy Progress

- BOSS galaxy BAO

BOSS collaboration 2014
Dark Energy Progress

- Other BAO results: including Lyman-alpha forest

BOSS Lya and Lya X QSO

BOSS collaboration 2014
- Combined constraints:
Dark Energy Progress

• Dark Energy Density as a function of z:
 Positive Dark Energy component at $z<1$.
 Slightly negative ones at $z>1.6$, due to Lya data.

BOSS collaboration 2014
We will display various dark energy models we have considered, and how each of the measurement contributed to the chi-square of the best fit model.

CMB chisq contributions are not shown.
More general forms of dark energy models gives constraints that are consistent with LCDM
Dark Energy Progress

Alternative models

CMB contributions are not shown
Dark Energy Progress

BOSS collaboration 2014

CMB contributions are not shown

WFIRST T-AFTA
Wide-Field Infrared Survey Telescope
The End
Dark Energy Progress

• CMB

Fig. 35. 2D marginalized posterior distribution for w_0 and w_a for Planck+WP+BAO data. The contours are 68% and 95%, and the samples are colour-coded according to the value of H_0. Independent flat priors of $-3 < w_0 < -0.3$ and $-2 < w_a < 2$ are assumed. Dashed grey lines show the cosmological constant solution $w_0 = -1$ and $w_a = 0$.

<table>
<thead>
<tr>
<th>Ω_A</th>
<th>0.6817</th>
<th>0.685$^{+0.018}_{-0.016}$</th>
<th>0.6830</th>
<th>0.685$^{+0.017}_{-0.016}$</th>
<th>0.6939</th>
<th>0.693 \pm 0.013</th>
<th>0.6914</th>
<th>0.692 \pm 0.010</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_8</td>
<td>0.8347</td>
<td>0.829 \pm 0.012</td>
<td>0.8322</td>
<td>0.828 \pm 0.012</td>
<td>0.8271</td>
<td>0.8233 \pm 0.0097</td>
<td>0.8288</td>
<td>0.826 \pm 0.012</td>
</tr>
<tr>
<td>ω_m</td>
<td>11.37</td>
<td>11.1 \pm 1.1</td>
<td>11.38</td>
<td>11.1 \pm 1.1</td>
<td>11.42</td>
<td>11.1 \pm 1.1</td>
<td>11.52</td>
<td>11.3 \pm 1.1</td>
</tr>
<tr>
<td>H_0</td>
<td>67.04</td>
<td>67.3 \pm 1.2</td>
<td>67.15</td>
<td>67.3 \pm 1.2</td>
<td>67.94</td>
<td>67.9 \pm 1.0</td>
<td>67.77</td>
<td>67.80 \pm 0.77</td>
</tr>
<tr>
<td>Age/Gyr</td>
<td>13.8242</td>
<td>13.817 \pm 0.048</td>
<td>13.817</td>
<td>13.813 \pm 0.047</td>
<td>13.7914</td>
<td>13.794 \pm 0.044</td>
<td>13.7965</td>
<td>13.798 \pm 0.037</td>
</tr>
</tbody>
</table>
Dark Energy Progress

- Gravitational Lensing

Heymans et al. 2013
Dark Energy Progress

- Cluster

Spergel, Flauger & Hlozek 2013
Dark Energy Progress

- CMB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_Λ</td>
<td>0.6817</td>
<td>0.685$^{+0.018}_{-0.016}$</td>
<td>0.6830</td>
<td>0.685$^{+0.0017}_{-0.0016}$</td>
<td>0.6939</td>
<td>0.693$^{+0.013}_{-0.013}$</td>
<td>0.6914</td>
<td>0.692$^{+0.01}_{-0.01}$</td>
<td></td>
</tr>
<tr>
<td>σ_8</td>
<td>0.8347</td>
<td>0.829$^{+0.012}_{-0.012}$</td>
<td>0.8322</td>
<td>0.828$^{+0.012}_{-0.012}$</td>
<td>0.8271</td>
<td>0.823$^{+0.0097}_{-0.0097}$</td>
<td>0.8288</td>
<td>0.826$^{+0.01}_{-0.01}$</td>
<td></td>
</tr>
<tr>
<td>τ_0</td>
<td>11.37</td>
<td>11.1$^{+1.1}_{-1.1}$</td>
<td>11.38</td>
<td>11.1$^{+1.1}_{-1.1}$</td>
<td>11.42</td>
<td>11.1$^{+1.1}_{-1.1}$</td>
<td>11.52</td>
<td>11.3$^{+1.1}_{-1.1}$</td>
<td></td>
</tr>
<tr>
<td>H_0</td>
<td>67.04</td>
<td>67.3$^{+1.2}_{-1.2}$</td>
<td>67.15</td>
<td>67.3$^{+1.2}_{-1.2}$</td>
<td>67.94</td>
<td>67.9$^{+1.0}_{-1.0}$</td>
<td>67.77</td>
<td>67.8$^{+0.7}_{-0.7}$</td>
<td></td>
</tr>
<tr>
<td>Age/Gyr</td>
<td>13.8242</td>
<td>13.817$^{+0.048}_{-0.048}$</td>
<td>13.8170</td>
<td>13.813$^{+0.047}_{-0.047}$</td>
<td>13.7914</td>
<td>13.794$^{+0.044}_{-0.044}$</td>
<td>13.7965</td>
<td>13.798$^{+0.0}_{-0.0}$</td>
<td></td>
</tr>
</tbody>
</table>

Wide-Field Infrared Survey Telescope

WFIRST-T-AFTA
Dark Energy Progress

- SN or
- BAO (BOSS 1st year)
- + Planck
- + WMAP Polarization

Planck Collaboration 2013

Fig. 36. 2D marginalized posterior distributions for w_0 and w_a, for the data combinations *Planck*+WP+BAO (grey), *Planck*+WP+Union2.1 (red) and *Planck*+WP+SNLS (blue). The contours are 68% and 95%, and dashed grey lines show the cosmological constant solution.