Limits on Planetary Companions from Doppler Surveys of Nearby Stars

Andrew Howard & BJ Fulton Institute for Astronomy, University of Hawaii

Lick Observatory

Keck Observatory

High-Contrast Imaging Mission Studies

Solar Array / Sunshield Coronagraph Instrument Instrument Carrier (blue truss)

Exo-S (Starshade)

WFIRST/AFTA

Exo-C (Coronagraph)

Doppler / High-contrast Imaging Synergy

(m/s) 800 600 Velocity 400 200 Radial Lick n Keck model -200 1960 1980 2000 2020 2040 time (year)

RV Detection

Doppler Measurements Provide:

Target Identification Target Exclusion (non-detection limits) Dynamical Masses

RV / Imaging Synergy:

Brown Dwarf discovery & characterization e.g. HR 7672 - Crepp+ 2012; Liu+ 2002 RV trend → imaging → spectra / mass

Direct Image

Spectrum

Star Lists and Data Lick and Keck Observatory Star Lists

Star Lists and Data Lick and Keck Observatory Data

Automated Search & Completeness HD 157214

RV Time Series & Periodogram

Completeness Limits

Survey Completeness

Completeness for all 76 Stars with RV Data

What about the Missed Stars? Jitter Estimates - ORV

Early Spectral Type (hot, < ~F8):

few and broad lines

 $\sigma_{\rm RV}\approx 0.16 * V \sin i^{1.5}$

Evolved Stars (subgiants, giants):

oscillations

 $\sigma_{RV} \approx v_{osc} = 0.234(L_{\star}/M_{\star}) \text{ m/s}$

Southern Hemishere (GK dwarfs):

< 3 m/s; limited by spectrometer?

Young Stars:

line distortions; rotational spot modulation

100 m/s \rightarrow < 3 m/s (function of logR'_{HK})

Binaries:

too hard, not recommended

Projected Sensitivity: A Dedicated RV Campaign for the Missed Stars

Sensitivity Gain HD 182572 (G8 dwarf, 15 pc)

Recommendations

Long-term RV Surveys - Fading!

Difficult to get telescope time & funding

1. Include Doppler Measurements in Mission Requirements

2. Invest in a Dedicated RV Facility and for pre-imaging survey

3. Measure the Jitter (σ_{RV}) of every plausible direct imaging target.

Summary

<u>Recommendation</u>: Include Doppler Measurements in <u>Mission Requirements</u>

Extra Slides

Limits on Planetary Companions from Doppler Surveys of Nearby Stars

Andrew Howard & BJ Fulton Institute for Astronomy, University of Hawaii

Lick Observatory

Keck Observatory

Idealized Completeness Prescription for Computing Completeness for Hypothetical Observing Campaign

- 1. Choose N_{obs} and T_{span} for survey and M_{\star} and σ_{RV} for stars.
- 2. Compute K₅₀(P)
- 3. Convert K₅₀(P) to Msini₅₀(P)
- 4. Convert Msini50(P) to Msini50(a)

$$K_{50}(\tau) = \frac{\sigma_{\rm RV} \,\alpha}{\sqrt{N_{\rm obs}}} \cdot \sqrt{1 + (10^{\tau - 1.5})^2}$$

What is σ_{RV} for Exo-C/Exo-S/AFTA Target Stars?

Idealized Completeness

 α = SNR of a successful detection

Idealized Completeness

$$K_{50}(\tau) = \frac{\sigma_{\rm RV} \,\alpha}{\sqrt{N_{\rm obs}}} \cdot \sqrt{1 + (10^{\tau - 1.5})^2}$$

 $\alpha \approx 6$ — Injection/recovery Simulations

Idealized Completeness

 $\alpha \approx 10$ — Real Planets on exoplanets.org

Recommendations

- Needed RV measurements should be written into mission requirements. Current Doppler surveys cannot observe (TACs won't support observations of) imaging targets without justification.
- Invest in a dedicated facility with the time baseline and RV precision to prepare for 10+ yr for the imaging missions.
- 3. Start dedicated RV campaigns to measure the jitter (σ_{RV}) of every plausible direct imaging target.

Recommendations (2)

- 4. We recommend that all target G and K dwarfs (in the North and South) be observed at least 10 times per year with as high of a precision as possible (≤ 2 m/s) to detect or place limits on super-Earths and Neptune-mass planets in few AU orbits.
- 5. For stars showing low enough jitter to enable completeness encompassing giant planets in few AU orbits, we recommend 10 RV epochs per year for 10 yr, with a short-term observing cadence designed to average over photospheric jitter.