Doing WFIRST Science TODAY!

Robert Kirshner Harvard University

Better knowledge of dark energy through infrared observations

SN IA in the IR with Pan-STARRS1 Doing WFIRST Science TODAY!

Medium-Deep Fields

Good light curves at z~0.4 Every 4 days griz 7 square degrees 0.26"/pixel Dozens of supernova candidates every month!

Find SN Ia with Pan-STARRS: difference imaging with Harvard's Odyssey Cluster

Get spectrum with MMT (or Magellan, Gemini or Keck) 358 Spectroscopic SN Ia

With David Jones (JHU):

Using Hectospec on MMT to get redshifts for the <u>hosts</u> of <u>all</u> the likely Pan-STARRS1 SN down to r~22 (z~0.5)

1100/1500 in hand

Figure by Arturo Avelino: based on Betoule+ (2014) plus PanSTARRS Rest+ (2014) and Scolnic+ (2014) Low-z is principally based on CfA observations

Cosmology Results from first 146 PanSTARRS SN Ia Hundreds more to come!

One good reason to observe SN Ia in the infrared

Seeing through the dirt

Seeing through the dirt

Another Good reason: Infrared Light Curves are Different

Mean Absolute Intrinisc BVIYJH $\Delta m15(B)=1.1$ Normal SN Ia

Kaisey Mandel

ApJ 731, 120 (2011) arXiv1402.7079 Postdoc @ Harvard Heirarchical Bayesian Analysis

(Savage Award from ISBA)

In the IR SN IA really are standard candles! And there's less trouble with dust.

THE ASTROPHYSICAL JOURNAL, 731:120 (26pp), 2011 April 20

The payoff for nearby supernovae: (CfAIR2 (arXiv 1408.0465) + Carnegie data in hand to double this sample)

Could we get this 2x advantage for the highz supernovae? RAISIN

Only in space!

Good precision IR measurements (3%) of cosmologicallyinteresting supernovae are not possible from the ground
This is what WFIRST will do by the boatload
We are doing a little now- could help shape WFIRST

Investigators:

AWARDED 100 Orbits Cycle 20/21

	Investigator	Institution	Country
PI	Prof. Robert P. Kirshner	Harvard University	USA/MA
CoI	Mr. Peter Challis	Harvard University	USA/MA
CoI	Dr. Ryan Chornock	Harvard University	USA/MA
CoI	Dr. Wendy L. Freedman	Carnegie Institution of Washington	USA/DC
CoI	Dr. Peter Garnavich	University of Notre Dame	USA/IN
CoI	Dr. Ryan Foley	Smithsonian Institution Astrophysical Observatory	USA/MA
CoI	Dr. Joshua Frieman	University of Chicago	USA/IL
CoI	Dr. Andrew Friedman	Harvard Universitysity	USA/MA
CoI	Dr. Eric Hsiao	Carnegie Institution of Washington	USA/DC
CoI	Dr. Mark E. Huber	University of Hawaii	USA/HI
CoI	Mr. David Oscar Jones	The Johns Hopkins University	USA/MD
CoI	Dr. G. H. Marion	Harvard University	USA/MA
CoI*	Dr. Kaisey Mandel	Imperial College London	GBR
CoI	Mr. Gautham Narayan	Harvard University	USA/MA
CoI*	Prof. Bob Nichol	University of Portsmouth	GBR
CoI	Dr. Mark M. Phillips	Carnegie Institution of Washington	USA/DC
CoI	Dr. Adam Riess	The Johns Hopkins University	USA/MD
CoI	Dr. Steven A. Rodney	The Johns Hopkins University	USA/MD
CoI	Dr. Armin Rest	Space Telescope Science Institute	USA/MD
CoI	Prof. Masao Sako	University of Pennsylvania	USA/PA
CoI	Prof. Christopher W. Stubbs	Harvard University	USA/MA
CoI	Dr. John L. Tonry	University of Hawaii	USA/HI
CoI	Prof. Michael Wood-Vasey	Unitersition of Pittsburgh	USA/PA

Number of investigators: 23

SN IA in the IR = RAISIN WFIRST Science NOW with a 2.4 m IR telescope

Get IR with WFC3

Goal: better knowledge of dark energy by avoiding systematic errors

Template subtraction works well

HST/WFC3-IR F125W 0.4 orbits F160W 0.6 orbits PS1C490037 z=0.422

MAP99040

RAISIN Scorecard

← 20cm → 23 PanSTARRS targets—good optical light curves

> 3 epochs of IR with HST in two near-IR bands

Images <u>without</u> the supernovae complete

Light curves in hand K-corrections underway

IR Spectra- needed for k-corrections

Eric Hsiao Howie Marion Mark Phillips RPK

Large collection of IR Spectra using Gemini and the FIRE Spectrograph at Magellan

Spectral evolution for SN Ia of various decline rates & luminosities

The Future

Dark Energy Survey External Collaborators: Spectra of SN Ia with MMT & Magellan to demonstrate targets for RAISIN2

More RAISINS, please!

Based on IR + Optical for 25 additional SN Ia at z~0.5 from DES

Low-z from CFAIR2 + Carnegie

Smaller systematic errors in distances based on good behavior of SN Ia in the IR at low-z & at cosmological distances

 $\sigma \sim +/-0.07$ (Betoule $\sigma = +/-0.06$)

We're learning today how to do WFIRST science:

- ✓ Pioneer methods for combining optical and IR measurements
- ✓ Implement k-corrections
- ✓ Reach state-of-the-art constraints on ₩ with a moderate increase in sample size
- ✓ Lower systematic error due to good behavior of SN Ia in IR

To maximize the redshift range that has the IR advantage with WFIRST, extend the detector wavelength range as far to the red as is feasible (I band @ $z \sim 1$ is 1.6µ)

Teasing Uncle Albert

