Combined Probes Analysis Strategies for the Precision Cosmology era Elisabeth Krause (Stanford) collaborators: Bhuvnesh Jain, Tim Eifler

WFIRS14, Pasadena, November 2014

The Power of Combining Probes

Best constraints obtained by combining cosmological probes

Independent probes: multiply likelihoods

 Combining probes from same survey requires more advanced strategies
 clustering, clusters and WL probe same underlying density field, are correlated
 correlated systematic effects

Joint Analysis Ingredients

Introducing CosmoLike

- Likelihood analysis library for combined probes analyses
- Observables from three object types, and their cross-correlations

 galaxies (positions), clusters (positions, N₂₀₀), sources (shapes)
 separate n(z) + specific nuisance parameters for each object type

 Consistent modeling across probes

 including systematic effects
- Computes non-Gaussian (cross-)covariances
- Optimized for high-dimensional likelihood analyses

CosmoLike Data Vector

Joint Analysis Game Plan

Systematics Work Plan

- Specify probes + scales (data vector)
 Identify + prioritize systematic effects

 find suitable parameterizations + limits
 needs to be consistent accoss probes
- Obtain constraints (priors) on nuisance parameters
 - independent observations
 - other observables from same data set
 - split data set
- Combine theory, simulation & data to improve priors
- Worked example: baryons. See Tim Eifler's talk for WFIRST WL systematics.

Impact of Baryons on WL

Mitigation of Baryons in WL

- PCA based mitigation
 strategy (Eifler, EK, et al. 14)
- Reduce FoM degradation by improving priors on range of baryonic scenarios
 - measure stacked halo
 profiles (e.g. SZ, X-ray)
 - update parameter range for hydro sims
 - feed these into updated marginalization scheme

Joint Analysis Game Plan

