Galaxy Cluster Science with Future Wide-Field Infrared Surveys

Simona Mei

GEPI - Observatory of Paris - University of Paris Denis Diderot

Galaxy clusters & predictions for the ESA Euclid mission (Laureijs et al. 2011)

- Beside the primary science of Euclid, the wide survey will cover 15,000 deg² down to VIS_{AB}=24.5 mag and YJH_{YAB}=24 mag, and the deep fields will cover 40 deg² down to VIS_{AB}=26.5 and YJH_{YAB}=26.0
- Euclid will find ~100,000 clusters with M>10¹⁴M_{sun}, between z=0.2 and z=2, with ~20,000 with z>1, ~6000 with z>1.5 (updated to Planck cosmology)
 - Constraints on cosmology understanding of the selection function and cluster mass determination (lensing!)
 - Galaxy evolution in dense environments and ETG progenitors

E-ELT MOSAIC (Evans et al. 2014)

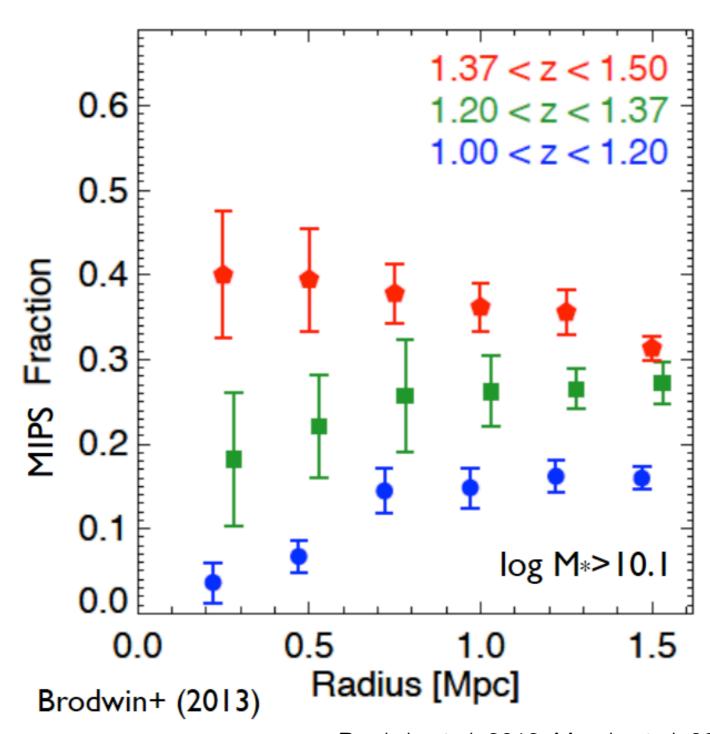
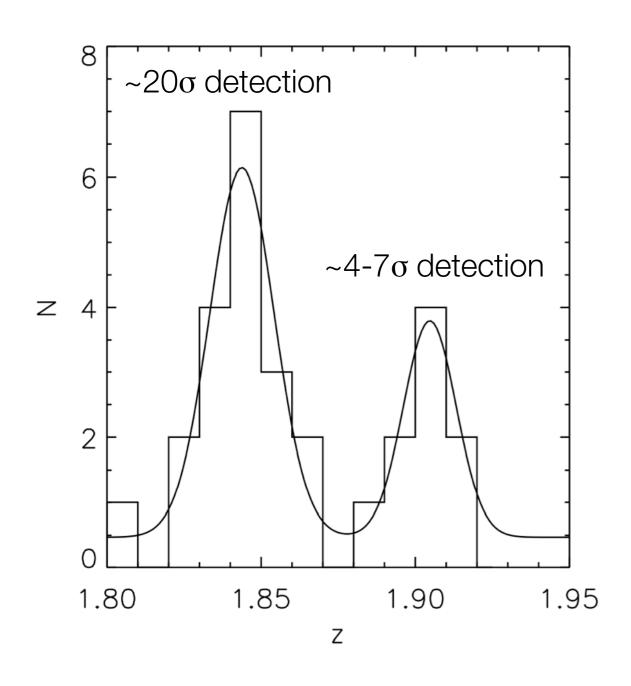

 The E-ELT and other ELTs will be ideal for Euclid higher redshift galaxies follow-up. As an example, the E-ELT/MOSAIC IFU (Evans et al. 2014) will target ETG progenitors up to z~5 and study their dynamics and chemical composition

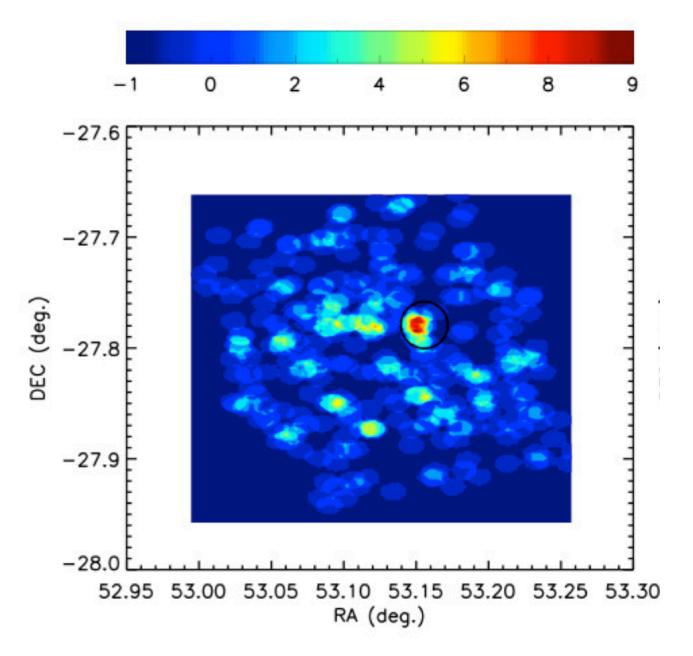
Table 3: Summary of top-level requirements from each Science Case; 'desirable' requirements are shown in italics.

Case	Multiplex	FoV/target	Spatial pixel size	λ-coverage (μm)	R
SC1 First light	20-40	2"×2"	40-100 mas	1.0-1.8 1.0-2.45	5,000
	≳150	_	(GLAO – 0.6"Ø)	1.0-1.8 1.0-2.45	>3,000
SC2 IGM &	10-15	2"×2"	(GLAO – IFU)	0.4-1.0 0.37-1.0	>3,000
Gal. clusters	50-100	_	(GLAO)	0.6-1.8 0.6-2.45	>3,000
SC3 Gal evol.	≳10	2"×2"	50-80 mas	1.0-1.8 1.0-2.45	5,000
	≳100	-	(GLAO – 0.6"Ø)	1.0-1.7 0.8-2.45	≥5,000 ~10,000
SC4 AGN	~10 per field	2" x 2"	≤100 mas	1.0-1.8	>3,000
SC5	Dense	1" × 1" 1.5" × 1.5"	≤75 mas 20-40 mas	1.0-1.8 0.8-1.8	5,000
Extragal stellar pops.	10s arcmin ⁻²	_	(GLAO)	0.4-1.0	≥5,000 ≥10,000
SC6 Gal archaeol.	10s arcmin ⁻²	_	(GLAO)	0.41-0.46 & 0.64-0.68 0.38-0.52 & 0.60-0.68	≥15,000 ≥20,000
SC7 GC science	Dense	≥2" x 2"	≤100 mas	1.5-2.45	≥5,000 ≥10,000
SC8 Planet form.	10s per field	_	(GLAO)	0.5-0.6	≥20,000

Note: Minimum target size for SC1 is reduced to 1"x1" if on/off sky subtraction is used.

At z>1.5 more star forming galaxies in the cluster cores

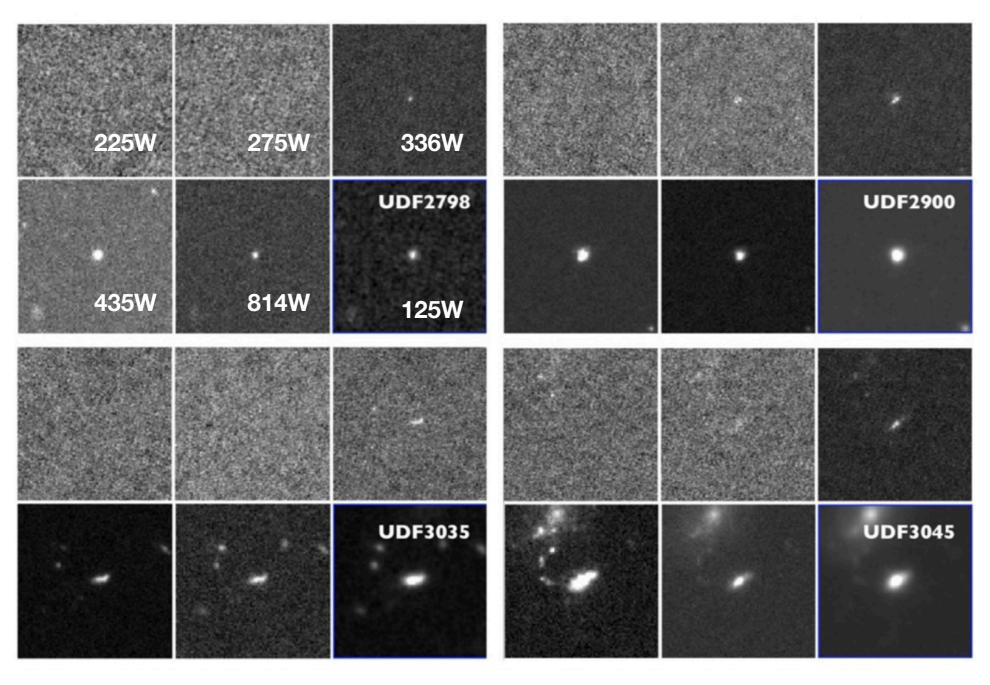

Brodwin et al. 2013; Muzzin et al. 2012, and references therein


Clusters and proto-clusters at z~1.6-2

Name	Identification	z	Overdensity	$\sigma_{disp} \ m (km/s)$	${\rm Mass} \atop (10^{14} \times M_{\odot})$	X-ray Lum./Detection $(10^{43} \text{ erg s}^{-1})$	Reference
CL J033211.67-274633.8	Group	1.61	$\sim 5\sigma$		$M_{200}^{(a)} = 0.32 \pm 0.08$	1.8 ± 0.6	Tanaka et al.
IRC-0218A/XMM-LSS J02182-05102	Proto-cluster	1.62	$> 20\sigma$	860 ± 490	$M_{200}^{(b)} \sim 0.1 - 0.4$	$> 4\sigma$ Detection	Papovich et al. 2010; 2012
SpARCS J022427-032354	Cluster	1.63				Detection	Muzzin et al. (2013)
IDCS J1426+3508	Cluster	1.75			$M_{200}^{(a)} \sim 5.6 \pm 1.6$	55 ± 12	Stanford et al. 2012; Brodwin et al. 2012
JKCS 041	Cluster	1.80			$M_{200}^{(c)} \sim 2$	76 ± 5	Newman et al. 2013; Andreon et al. 2013
HUDFJ0332.4-2746.6	Proto-cluster	1.84	$\sim 20\sigma$	730 ± 260	$M_{200}^{(b)} = 2.2 \pm 1.8$	< 1 - 6	Mei et al. 2014
IDCS J1433.2+3306	Cluster	1.89			$M_{200} \sim 1$		Zeimann et al. 2012
HUDFJ0332.5-2747.3	Group	1.90	$\sim 4-7\sigma$				Mei et al. 2014
CL J1449+085	Cluster	1.99	$> 20\sigma$		$M_{200}^{(a)} = 0.53 \pm 0.09$	6.4 ± 1.8	Gobat et al. 2013

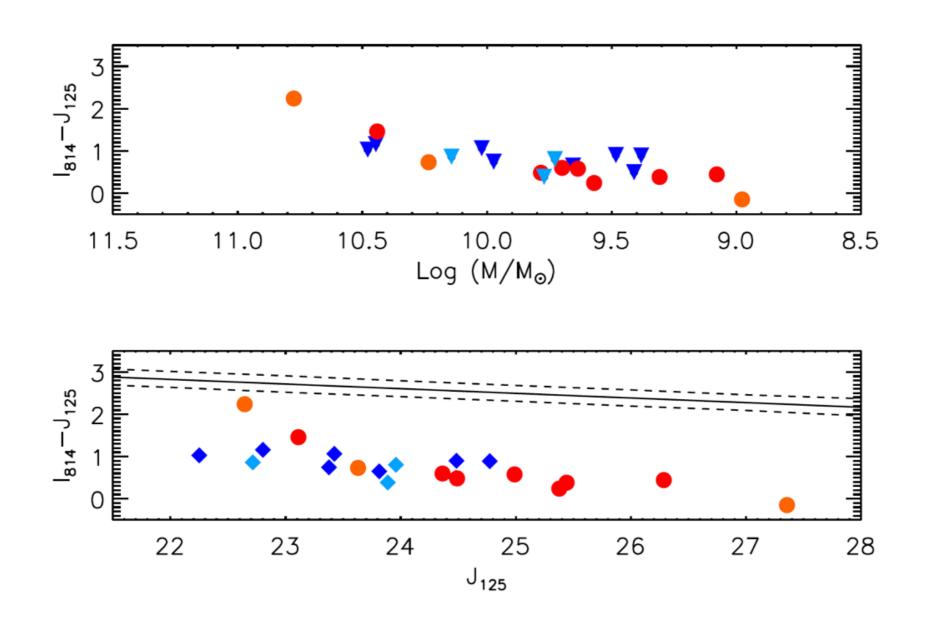
Mei et al. 2014


HUDFJ0332.4-2746.6 and HUDFJ0332.5-2747.3 CANDELS and 3D-HST overdensities at z=1.84 and 1.9


Mei et al. 2014

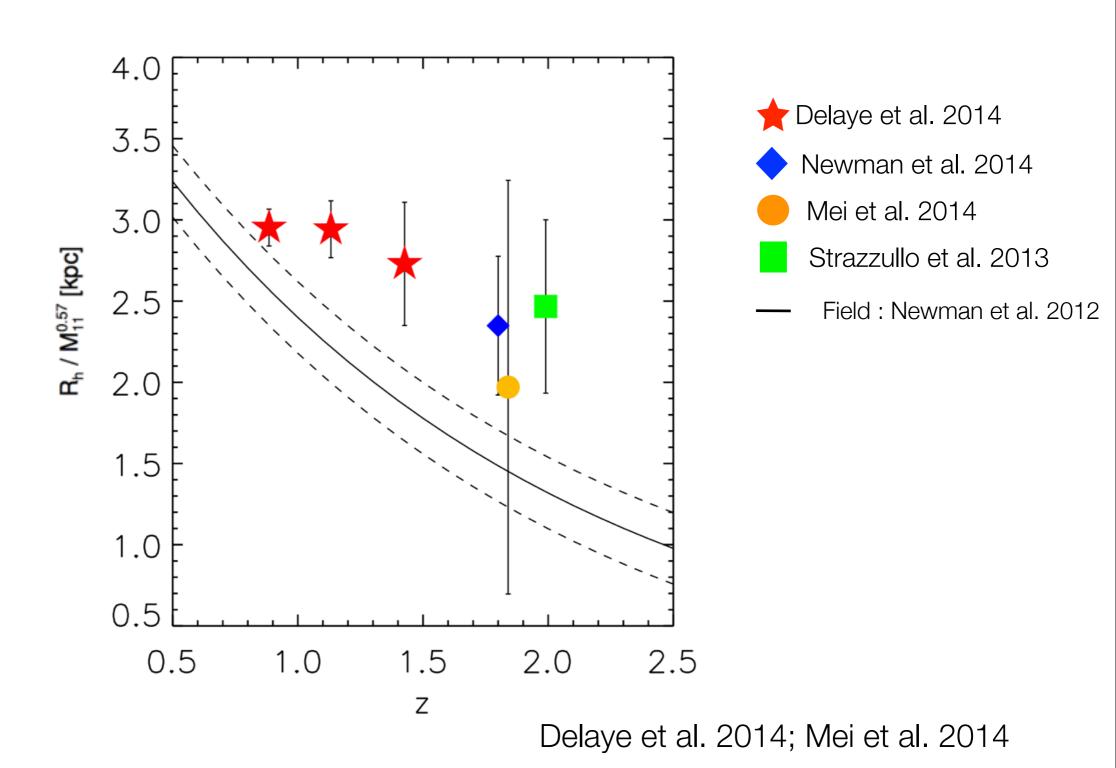
WFC3 Grism Spectroscopy from CANDELS and 3D-HST+GMASS

3D-HST spectra from Brammer et al. 2012


Lyman break confirmation

Mei et al. 2014

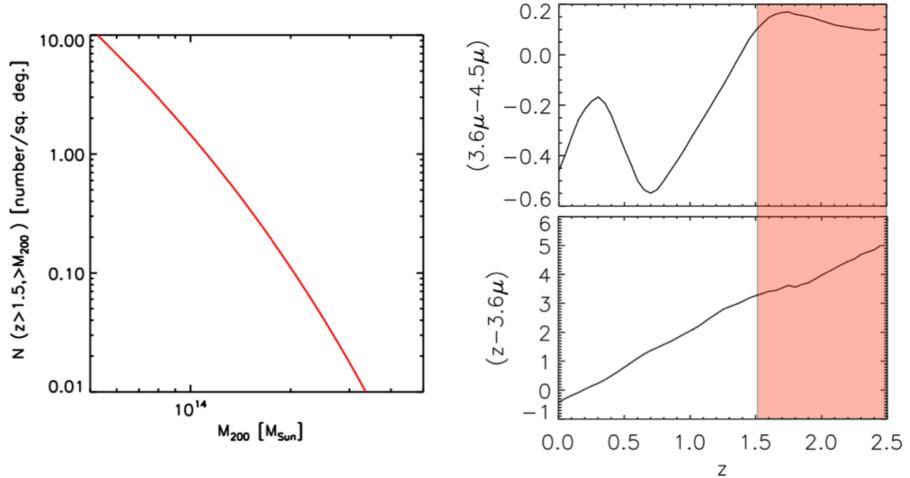
CANDELS imaging combined with HUDF UV (Teplitz et al. 2013)


Blue ETGs, mostly star-forming

The continuous line if the passively evolved CMR from z~1.3 clusters from Mei et al. 2009

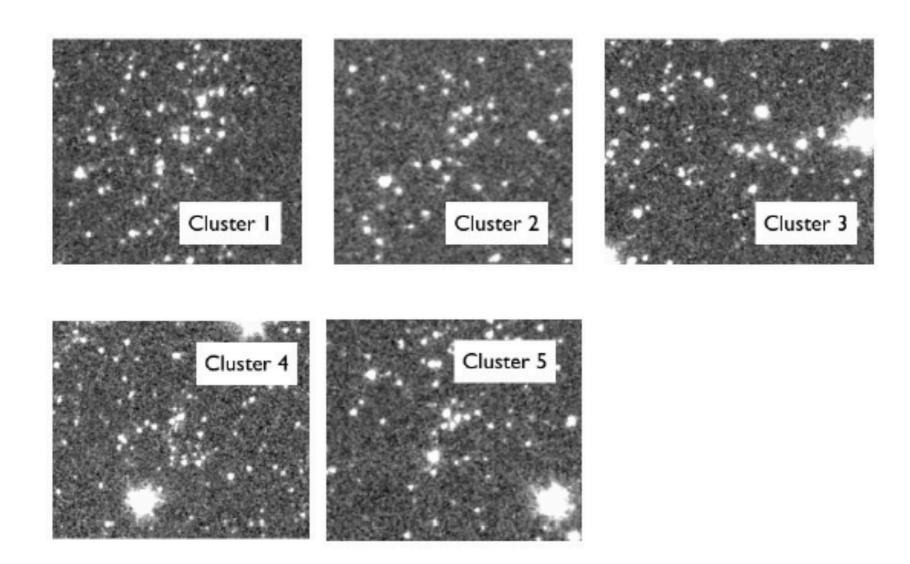
Mei et al. 2014

Size growth - only ETGs


Monday, November 17, 14

South Pole Telescope Spitzer Deep Field (SSDF)

PI: A. Stanford - see Rettura's talk - with Licitra, Lidman, Stanford, Ashby, Bartlett, Brodwin, Gettings, Gonzales, Martinez-Manso, Pierre, Sadibekova, Stern


- 100 deg. sq. covered with Spitzer IRAC 3.6µ and 4.5µ in the SPTpol field
- Survey completed in 2012 (Ashby et al. 2013; Rettura et al. 2014) ~100 clusters at z>1.5

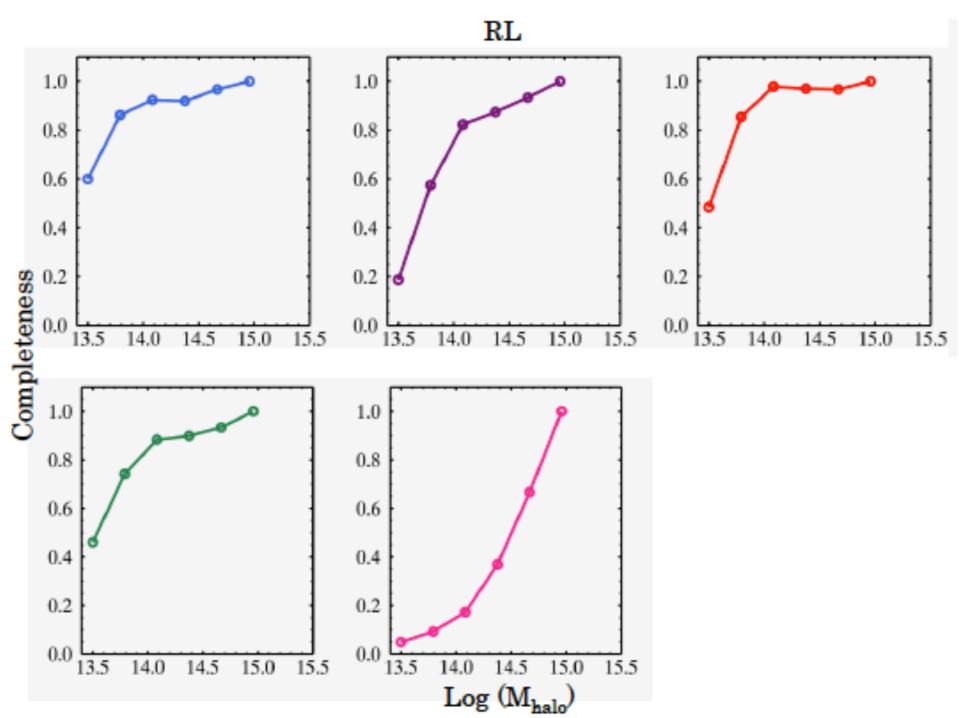
 Optical coverage of 25 sq.deg. with CTIO/DECam from the XXL consortium (PI: Lidman)

South Pole Telescope Spitzer Deep Field (SSDF) combined with CTIO/DECam

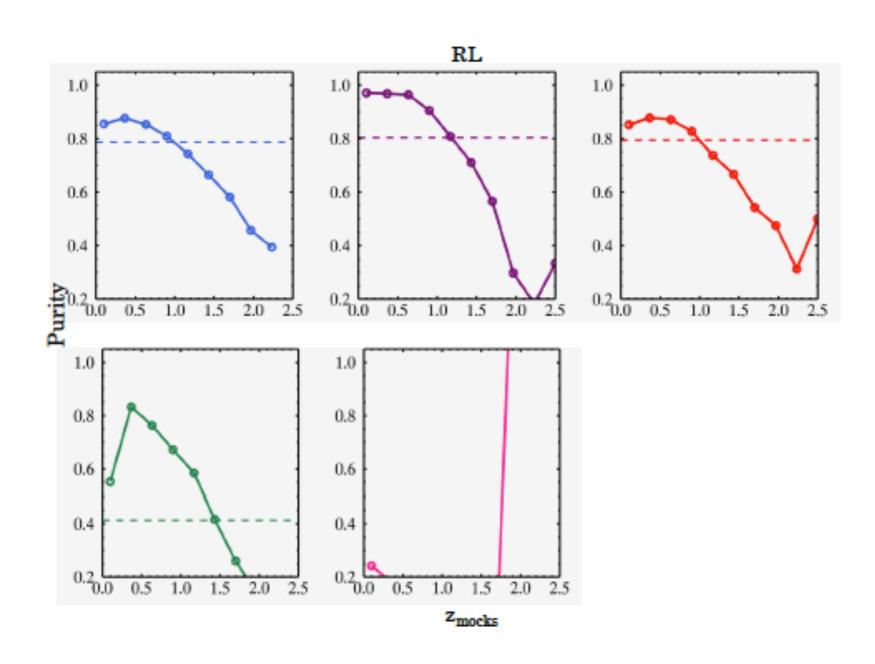
VLT/KMOS follow-up - pilot program with Capaccioli and Covone at the University of Naples - Rossella Licitra, SM, et al. in preparation

Euclid Cluster Detection Challenge (2013-2014)

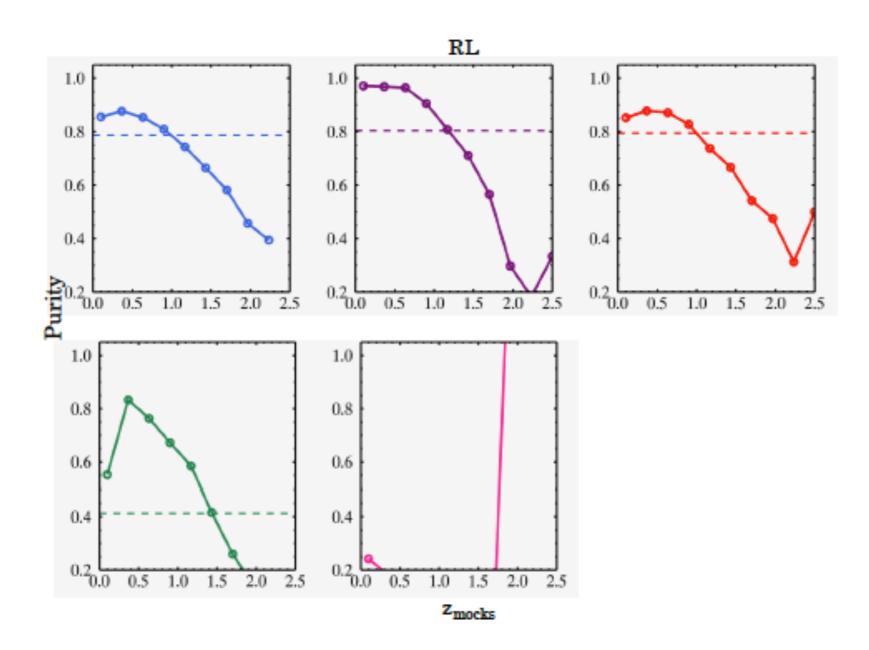
Authors: A. Iovino³, S. Farrens¹, S. Maurogordato², A. Biviano¹


Contributors:

- C. Adami⁴, code development and testing
- F. Bellagamba⁵, code development and testing
- C. Benoist², code development and testing
- A. Cappi⁶, mock catalog adaptation to challenge
- O. Cucciati^{5,6}, code development and testing
- F. Durret⁷, code development and testing
- S. Farrens¹, code development and testing, analysis of results
- A. Gonzalez⁸, code development and testing
- A. Iovino³, code development and testing, analysis of results
- R. Licitra⁹, code development and testing
- S. Mei⁹, code development and testing
- M. Roncarelli⁵, code development and testing
- S. Bardelli⁶, mock catalog analysis
- J. G. Bartlett¹⁰, discussions
- C. Baugh¹¹, mock catalog preparation
- S. Borgani^{12,1}, discussions
- A. Merson¹¹, mock catalog preparation
- L. Moscardini⁵, discussions
- M. Vannier², analysis of results and set up of the platform to run the challenge


Euclid Cluster Challenge

(RL is our cluster detection algorithm - Licitra et al., in preparation)



Euclid Cluster Challenge

Euclid Cluster Challenge

New cluster challenges are on the way, with improved estimation of photometry and photometric errors (Ascaso, SM et al, in preparation) and improved algorithms

Conclusions

- Euclid will find ~100,000 clusters with M>10¹⁴M_{sun}, between z=0.2 and z=2, with ~20,000 with z>1, ~6000 with z>1.5 (note: updated to Planck cosmology) Scaled to WFIRST 2400 sq.deg. upper limit ~2400 clusters at z>1.5
- Future ELT spectrograph follow-up (e.g. MOSAIC) will study in detail massive ETG progenitors dynamics and stellar population
- This science is starting now: with HST/WFC3 imaging and grism spectroscopy, Spitzer deep observations and VLT/KMOS and Keck/MOSFIRE follow-up we observe the progenitors of local clusters. But...it is limited in survey area and we have only tens of objects!
- With the current IR and mid-IR surveys we are predicted to detect and analyze ~100 clusters at z>1.5 in the next few-5 years, and ~6000 with the next generation wide field infrared surveys in 5-10 years

Euclid (Laureijs et al. 2011)

SURVEYS									
	Area (deg2)		Description						
Wide Survey	Wide Survey 15,000 (required)		Step and stare with 4 dither pointings per step.						
	20,000 (goal)								
Deep Survey	40	In at least 2 patches of > 10 deg ²							
		2 magnitudes deeper than wide survey							
PAYLOAD									
Telescope	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m								
Instrument	VIS		NISP						
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$ $0.763 \times 0.722 \text{ deg}^2$								
Capability	Visual Imaging	NIF	netry	NIR Spectroscopy					
Wavelength range	550– 900 nm	Y (920-	J (1146-1372	H (1372-	1100-2000 nm				
		1146nm),	nm)	2000nm)					
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1				
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line				
		source	source	source	flux				
Detector	36 arrays	16 arrays							
Technology	4k×4k CCD	2k×2k NIR sensitive HgCdTe detectors							
Pixel Size	0.1 arcsec	0.3 arcsec			0.3 arcsec				
Spectral resolution					R=250				