Reflected Light from Giant Exoplanets

Caroline Morley UC Santa Cruz Mark Marley Nikole Lewis Roxana Lupu Jonathan Fortney Michael Line Kerri Cahoy

Image credit: NASA/JPL/University of Arizona

geometric albedo

wavelength

degeneracy between methane abundance and continuum opacity: need both weak and strong bands

lots of work done in ~1999-2005 developing models and making predictions for exoplanets

degeneracy between methane abundance and continuum opacity: need both weak and strong bands

lots of work done in ~1999-2005 developing models and making predictions for exoplanets Exoplanet reflection spectra out of fashion for last ~5 years because **hot Jupiters are dark**.

Exoplanet reflection spectra out of fashion for last ~5 years because **hot Jupiters are dark**.

Exoplanet reflection spectra out of fashion for last ~5 years because **hot Jupiters are dark**.

Kepler photometry allowed us to infer inhomogeneous clouds for the first time.

Demory et al. 2013

Theoretical Albedo Spectra: general approach

1D radiative-convective equilibrium model:

temperature, composition

Theoretical Albedo Spectra: general approach

1D radiative-convective equilibrium model:

temperature, composition

coupled cloud model: cloud tau, scattering,

asymmetry

The temperature structure (set by stellar flux) controls the clouds.

The temperature structure (set by stellar flux) controls the clouds.

The temperature structure (set by stellar flux) controls the clouds.

A space coronagraph opens up a totally different class of planets for atmospheric characterization.

Credit: WFIRST-AFTA Interim Report

We'll probe solar-system temperature planets AND warmer planets.

We'll probe solar-system temperature planets AND warmer planets.

RV targets span temperature range from alkali, to water, to ammonia, to methane clouds.

Figure from Nikole Lewis RV targets span temperature range from alkali, to water, to ammonia, to methane clouds.

HD 62509b (warm, alkali clouds)

HD 99492c (cold, ammonia clouds)

> Figure from Nikole Lewis

RV targets span temperature range from alkali, to water, to ammonia, to methane clouds.

HD 62509b (warm, alkali clouds)

HD 99492c (cold, ammonia clouds)

> Figure from Nikole Lewis

Huge range of spectra possible (not just scaled Jupiters!)

Higher metallicity widens and deepens molecular features: can constrain metallicity!

R~70 adequately samples several methane features.

We can apply powerful retrieval techniques to low SNR data to constrain CH₄, clouds, etc. See Roxana's

spectrum

Figures from Roxana Lupu

See Roxana's poster here!!!

orbital information: temperature M sin(i) — M

orbital information: temperature

NASA, ESA, and R. Soummer (STScl)

limits on radius

NASA, ESA, and R. Soummer (STScI)

orbital information: temperature M sin(i) M Iimits on gravity

NASA, ESA, and R. Soummer (STScI)

orbital information: temperature M sin(i) M Iimits on gravity

limits on gravity

NASA, ESA, and R. Soummer (STScI)

limits on radius

orbital information:

temperature

 $M sin(i) \longrightarrow M$

European Southern Observatory - ESO

phase information: makes interpreting spectra much easier

NASA, ESA, and R. Soummer (STScl)

phase information: makes interpreting spectra much easier

orbital information:

temperature

 $M sin(i) \longrightarrow M$

limits on radius

Information-rich set of objects

limits on gravity

European Southern Observatory - ESO

Space coronagraph gives us a catalog of RV planets that spans wide unexplored T_{eff} space.

Conclusions

- Albedo spectra finally poised to provide powerful constraints on planet properties
- Can retrieve methane abundance, cloud locations, cloud albedos for Jupiter-like planets
- Critical "catalog" for years to come
- RV sample provides context for new discoveries