

Research to Support WFIRST (Microlensing) Exoplanet Science

Jennifer C. Yee Sagan Fellow

Image the Entire WFIRST Microlensing Field with HST

Image the Entire WFIRST Microlensing Field with HST

Image the Entire WFIRST Microlensing Field with HST

Optical HST Imaging

An immediate, optical HST survey of the WFIRST fields will allow proper motion measurements for 22% of WFIRST stars → Direct verification of WFIRST microlens astrometry.

Reliable microlens astrometry measurements are vital to measuring planet masses with WFIRST.

Optical HST Imaging

Colors of stars in WFIRST field \rightarrow temperature, extinction, metallicity

WFIRST relative astrometry + GAIA absolute astrometry + HST colors → Detailed structure of the galaxy

Reasons for Optical HST Imaging

- Direct test of microlens astrometry
- Interpretation of microlensing events
- Colors of stars in the bulge → age, temperature, metallicity
- Identify KBO occultations
- Many other reasons

Optical HST Imaging

- Phase I: Pencil beam survey
 - Characterize different environments
 - Verify the utility of optical imaging
 - (Observe past microlensing events)
- Phase II: Observations of the core WFIRST fields
 - Systematic imaging of fields guaranteed to be part of the final WFIRST field
- Phase III: Complete survey of WFIRST field

• Directly support WFIRST science and reduce its scientific risk:

• **Develop techniques** for measuring planet masses:

• Development of WFIRST analysis pipelines:

- Directly support WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- **Develop techniques for measuring planet masses:**

• Development of WFIRST analysis pipelines:

- Directly support WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- **Develop techniques for measuring planet masses:**
 - Satellite parallax observations using Spitzer, Kepler, and TESS
 - HST or AO flux measurements of lenses in ground-based microlensing events
 - Measurements of microlens astrometry for black holes
- Development of WFIRST analysis pipelines:

- Directly support WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- **Develop techniques** for measuring planet masses:
 - Satellite parallax observations using Spitzer, Kepler, and TESS
 - HST or AO flux measurements of lenses in ground-based microlensing events
 - Measurements of microlens astrometry for black holes
- Development of WFIRST analysis pipelines:
 - Multi-epoch HST/WFC3/IR observations of the bulge
 - An open competition in microlensing analysis

SAG 11: Preparing for the WFIRST Microlensing Survey

- Directly support WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- **Develop techniques for measuring planet masses:**
 - Satellite parallax observations using Spitzer, Kepler, and TESS
 - HST or AO flux measurements of lenses in ground-based microlensing events
 - Measurements of microlens astrometry for black holes
- Development of WFIRST analysis pipelines:
 - Multi-epoch HST/WFC3/IR observations of the bulge
 - An open competition in microlensing analysis

Preparing for the WFIRST Coronagraph Mission