

- C. Johnson: Bulge populations
 - Can detect micro-lensed Bulge stars
 - Need rapid notification to get spectra
 - Both deep- and shallow WFIRST exposures useful
 - Need proper motions to separate populations
- R. Benjamin (U. Wisc.): Other ½ of MW
 - PMs reveal stars on far side of center
 - Need Ks to see through center
 - Plan for opportunity: Late-mission repeats of early fields for PMs
- M. Meixner (STScI): IR surveys of Magellanic Clouds
 - Need Ks for extinction studies
 - LMC bar is key calibration field

- D. Kirkpatrick (IPAC): Brown dwarfs
 - WFIRST good for detecting very-low-mass objects (BDs)
 - These are akin to free-floating planets

GRISM data as useful and deep as photometry; maybe better

• K. Schlaufman (MIT): First stars in the IR

- J. Simon (Carnegie): MW satellite galaxies
 - Studying IMF ~10x better than HST in NIR, plus huge FOV

- R. Indebetouw (UVa): Extinction and dust
 - Ks critical for extinction
 - Need to keep bands from broadening to reduce ambiguity

- K. Kinemuchi (APO): Variable stars
 - Cadencing can show RR Lyrs and Cepheids to large distances
- R. Beaton (Carnegie): Galactic haloes in the LG
 - Reveals all phases of star formation
 - WFIRST well suited due to large FOV and depth
- J. Schnittman (GSFC): Microlensing of neutron stars & BHs
 - Can probe high end of IMF
 - Find BHs in planetary graveyards
 - Binary evolution

- Missing from our topics:
 - Asteroseismology (but hear A. Gould)
 - Star formation (putting the "I" in IMF)

1. Longer λ desired (e.g., K_s), w/no $\Delta\lambda$ broadening

- 1. Longer λ desired (i.e., K_s), w/no $\Delta\lambda$ broadening
 - Punch through extinction e.g., bulge science

Infrared star-count map as a function of wavelength (2MASS + GLIMPSE)

(Benjamin)

- 1. Longer λ desired (e.g., K_s), w/no $\Delta\lambda$ broadening
 - Punch through extinction e.g., bulge science
 - Increased sensitivity to dust properties

- 1. Longer λ desired (e.g., K_s), w/no $\Delta\lambda$ broadening
 - Punch through extinction e.g., bulge science
 - Increased sensitivity to dust properties
 - Detect cooler brown dwarfs

Note BDs easy to detect in grism mode

(Kirkpatrick)

WFI Grism Survey

WFIRST-AFTA provides the capability of identifying Y dwarfs directly via their spectra, independent of any color selection.

These data can check of the robustness of color selections by providing confirmation of color-selected candidates and by identifying Y dwarfs missed via color cuts.

Grism data go surprisingly deep for Y dwarfs because the light in concentrated at only a few discrete wavelengths.

- 1. Longer λ desired (e.g., K_s), w/no $\Delta\lambda$ broadening
 - Punch through extinction e.g., bulge science
 - Increased sensitivity to dust properties
 - Increased later type brown dwarf sensitivity
 - Sensitivity to AGB stars intermediate ages

- 1. Longer λ desired (e.g., K_s), w/no $\Delta\lambda$ broadening
 - Punch through extinction e.g., bulge science
 - Increased sensitivity to dust properties
 - Increased later type brown dwarf sensitivity
 - Sensitivity to AGB stars intermediate ages

If λ continuity is required for other science, are

split filters an option?

- 2. Possibility of "treasury survey programs"
 - targets of broad interest to MW & LG science:
 - Magellanic Clouds
 - Central Milky Way
 - M31

- 2. Possibility of "treasury survey programs"
 - targets of broad interest to MW & LG science:
 - legacy programs have high productivity/impact

Contribution of Legacy programs to Spitzer productivity

- 3. Some regions with controlled cadencing?
 - Variable stars
 - Asteroseismology

Long baselines for astrometry

20

Tomorrow

Why astrometry matters