

G&LG: we promised astrometry!

- R. van der Marel (STScI): Local Group Proper Motions
 - Stellar dynamics and kinematics arise from gravity and interactions, hence reveal dark matter, masses, gradients, and processes such as "disk heating."
 - RVs are distance-independent but 1-D; need PMs to go to 3-D.
 - What's needed?
 - 1km/s at 7 kpc for globular internal dynamics
 - 10 @ 70 kpc for MW halo/satellite dynamics
 - 100 @ 700 kpc for LG dynamics
 - Corresponds to 30 μarcsec/yr (water molecules at 1 m)
 - Feasible with HST, but fields small (reference objects scarce)
 - Large fields and depth of WFIRST break through the limits.
 - Larger pixels, but can reach background galaxies.
 2X less precision as HST but 100X larger field for root N

- V. d. Marel (cont.):
 - Gaia: spectacular for dynamics of much of MW
 - WFIRST: in MW, HLS and Bulge survey go much deeper than Gaia (Gaia hits number limit)
 - WFIRST excels for faint targets:
 - Bulge and halo kinematics
 - Stellar streams
 - Hypervelocity stars
 - Dwarf galaxies
 - Internal motions

Internal rotation of LMC by vdM & Kallivayalil.

R. Street (LCOGT): WFIRST and Binary Stars

- Binaries are fundamental:
 - Their number show star formation produces lots of binaries
 - What are the mechanisms?
 - They reveal stellar physics and physical processes
 - Few low-mass binaries known
 - Need separations, mass ratios, eccentricities, ...
 - Detect binaries as doubles: visual, astrometric, and eclipsing
 - WFIRST: Micro-lensing survey sensitive to binaries of all mass ratios
 - Samples all of Galaxy
 - Also detect planets
 - WFIRST: Asteroseismology for R and M in high cadence fields
 - WFIRST: Parallaxes provide independent check on R, M for some stars (see Gould talk)

- G. Zasowski (JHU): Dust in the Milky Way & Local Group
- Dust is everywhere; holds metals and chemicals
- Sources include SNe, evolved stars
- How to assess reddening:
 - SED modeling
 - Dust proxies (e.g., long λ emission,
 H I emission, DIBs)
 - Statistical distributions

- WFIRST+Gaia: 3-D dust maps
 - Bulge microlensing field
 trig π's real benefit for 3-D mapping
 - Additional bulge + disk fields
 - Nearby galaxies (e.g., as shown in PHAT talk)
 - Star forming regions

- D. Ardila (Aerospace Corp.): Searching for Young Stars
- Need young stars for <u>Initial</u> Mass Function
- Role of planets in clearing and expelling disk
- Disk composition vs. radius
- Planet migration: How and when
- WFIRST: Distant star-forming regions in MW (and LG)
 - K=19 means 0.1 M_{sun} at 20 kpc Galactic radius
- WFIRST: Stellar and sub-stellar pops in SFRs
 - H=18 reaches 1 M_{Jup} at 1 Myr; Grism to get type
- WFIRST: Finding closest young stars kinematically
 - Need additional info to confirm youth
- WFIRST: Coronagraphy for disks and disk structure/evolution

M. Messineo (MPIFR): Massive Stars in Giant Molecular Clouds

- GMC G23.3–0.3 seen in radio
- K-band found ~40 OB stars in G23.3–0.3 GMC complex
- 11 Of stars at 5-8 Myr
- Glimpse data critical

TESS and Galactic Astronomy (Stassun)

- 2-min cadence opportunities
 - asteroseismology, mainly red giants (TESS nearby, WFIRST distant stars)
 - -stellar granulation "flicker" (does it extend to IR & WFIRST?) accurate gravities, ages for field stars
 - eclipsing binaries: fundamental physics

- 30-min cadence for full frame downloads
 - stellar weather and rotations (gyrochronology)
 - variable stars (better lightcurves for all known variables)
- WFIRST coronograph follow-up
 - circumstellar environments for dust/debris disks

Infrared Spectroscopy (Bovy)

- APOGEE: high resolution, multifiber H-band spec'y
 - Dual hemisphere capability will soon exist.
 - Enables "follow-up" in heavily extinguished regions.
 - Precision RVs and multi-element chemistry.
 - Needed for complete picture of MW disk/bulge.
 - Asteroseismology needs [Fe/H] to get accurate ages.
 - Step toward larger instruments on larger telescopes.
 - E.g., MOONS: 0.8- 1.8μ on VLT medium and high res arms

Infrared Photometry, Astrometry, (µlensing) (Dekany)

- VVV: Charting the Milky Way bulge, disk
 - J,H,K mapping stars and dust
 - Time series data
- WFIRST pre-cursor, as NIR time-series survey of bulge, disk
 - Training for use of massive stellar database, esp'ly crowded field.
 - Provide science cases
 - Input catalogs for follow-up
 - Extend temporal baselines (proper motions, μlensing)

WFIRST for VVV

- Recalibration
- Deblending
- Additional epochs

LSST Synergy (Grillmair)

• Halo substructure, streams via matched filtering.

LSST Synergy (Grillmair)

- Halo substructure, streams via matched filtering.
- WFIRST: Star counts, wide area, but reduced color span.

LSST Synergy (Grillmair)

- Halo substructure, streams via matched filtering.
- WFIRST: Star counts, wide area, but reduced color span.
- WFIRST + LSST: Widens λ span, widens stellar color span. increases contrast of detectable features.

WFIRST-LSST Synergies for Local Volume Exploration

(Grillmair)

	WFIRST HLS			LSST	
Training s/g separation	2000 square degrees			>18,000 square degrees	
	FWHM ~ 0.11"		>	FWHM ~ 0.7"	
	0.9 – 2.0 μm	<	_	ugrizy	
	~10 km/s (?) RVs to AB ~ 20.5	-	>	none	
	0.1 mas/yr PMs to V ~ 20	-	>	0.3 mas/yr PMs to r ~ 20	
_	RR Lyrae distances to 2%	«	– RI	R Lyrae detection to > 1Mpc	

Wm. Dawson (LLNL): Blending

Failure modes from ground & space

Photo-z's of blended galaxies can be biased

Key observables: tools in mitigating blending

Color spatial gradients

Photometric redshifts

Light profile morphology

- Space imaging
 - Best ground seeing epochs (more for LSST)

Methods for combining survey data

- 1. Catalog comparison
- 2. Interim samples from 1 survey + pixel-level analysis in 2nd survey
 - Need many samples
- 3. Interim samples from both surveys
 - Need many samples + binning of model parameters
- 4. Joint analysis of pixel data

From Schneider talk on Monday

Challenge: methods 2 - 4 often require re-analyzing pixel data

Implications for the Future

- Area vs. Depth: new considerations = blending
 - What's good for WFIRST?
 - What's good for LSST?
- Best means of integrating WFIRST and LSST?
- Computational requirements (joint fitting)