The search for the most distant clusters with *Spitzer*: synergies with *WFIRST~AFTA*

Alessandro Rettura

Caltech - IPAC

GALAXY CLUSTERS AT THE FRONTIERS OF KNOWLEDGE

- **Galaxy clusters** trace baryon and dark matter content and distribution
- The redshift distribution of detected high redshift clusters in a deep, large survey is highly sensitive to the dark energy equation of state.
- In combination with low-z clusters, following redshift evolution breaks parameter degeneracy

Mohr et al. 2003

Abundance of rich clusters as a function of mass and redshift allows to trace the growth rate of structure.

Key uncertainty in this approach is accurate calibration of cluster mass scale.

WFIRST deep lensing observations will determine accurate mass determination of clusters.

Cluster abundances can then be used to determine the effects of dark energy on the growth rate.

Galaxy Clusters, tools for WFIRST-AFTA cosmology : hosts of Type Ia SNe

- Type Ia SNe provided the first strong evidence for cosmological acceleration (Riess et al. 1998; Perlmutter et al. 1999)
- By targeting massive galaxy clusters at 0.9 < z < 1.5, a threefold improvement:
 - in the efficiency of finding SNe(compared to an HST field survey)
 - and a factor of three improvement
 in the total yield of SN detections
 in relatively dust-free red-sequence galaxies.
 - -Decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, reducing one of the largest systematic uncertainties in SN cosmology

P.I.: Perlmutter

Supernova Cosmology Project

Dawson et al. 2009, Suzuki et al. 2012

Galaxy Clusters as Cosmic telescopes: Discovery and study of first galaxies with WFIRST

CLASH has lead the way in coupling the gravitational lensing power of massive galaxy clusters with space-based enhanced panchromatic imaging capabilities

Test of structure formation models with unprecedented precision.

Discovery of very distant galaxies with unprecedented details

P.I.: Postman

Motivation

Tools for cosmology : Redshift distribution, baryon and dark matter content

 σ 8, dark energy, universe's equation of state

Hosts of type Ia Supernovae, dark energy

Cosmic telescopes: Discovery and study of first galaxies

Tools for galaxy evolution studies: mode and epoch of massive galaxy formation

environmental effects, baryon-dark matter interaction

Goal

Finding large samples of mass-selected clusters at high-redshift (1.3 < z < 2)

Current Generation of $z \ge 1$ **Cluster Surveys**

• Infrared

ISCS/IDCS (IRAC Shallow/Distant Cluster Survey) SpARCS (Spitzer Adaptation of Red-sequence Cluster Survey) UKIDSS DXS (UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey) SSDF (Spitzer SPT Deep Field Survey) CARLA (Clusters around Radio-Loud AGN) MaDCoWS (Massive Distant Clusters of WISE Survey)

Optical DES (DARK EN

DES (DARK ENERGY SURVEY)

• Sunyaev-Zel'dovich Effect

ACT (Atacama Cosmology Telescope) SPT (South Pole Telescope) Planck

• X-ray

XMM-XXL XMM-LSS (XMM Large-Scale-Structure Survey) XCS (XMM Cluster Survey) XDCP (XMM-Newton Distant Cluster Project) eROSITA (extended Roentgen Survey with an Imaging Telescope Array) (Launch 2015)

• Future Near-Infrared Survey

- EUCLID
- WFIRST

Spitzer Space Telescope

120s depth: [4.5] < 18.2 (Vega)

Large, homogeneous Spitzer high redshift cluster surveys:

-provide exciting targets for WFIRST

-provide a training set to identify additional clusters outside of the Spitzer footprint

Eisenhardt et al. 2008

SSDF: Spitzer-SPT Deep Field survey

Cycle-8 Warm-Spitzer Exploratory Program

- 94deg²
- [3.6], [4.5] mag
- 120s depth
- 5σ lim: [4.5]<21.46 AB ; [3.6]<21.75 AB
- Coverage of 23h field of the SPT Survey
- Why SPT ?
- SZ-effect Masses (Reichardt+2013)
- SPTpol (ongoing) will provide SZ-masses up to z~2

PI: Stanford (UC-Davis)

Ashby+2013

SSDF Clusters Working Group

M. Ashby (Harvard) J. Bartlett (Paris – JPL) M. Brodwin (UMKC) P. Eisenhardt (JPL) D. Gettings (U.Florida) A. Gonzalez (U.Florida) F. Ardila (U. Florida) R. Licitra (Paris Obs.) J. Martinez-Manso (U.Florida) S. Mei (Paris Obs.) P. Rosati (U.Ferrara-Italy) S.A. Stanford (UC-Davis) (*Spitzer*-PI) D. Stern (JPL)

+ SSDF Team

Large Area Spitzer Surveys

Ancillary Data

- BCS survey ~50deg (PI: Desai– griz photometry, 23 AB mag , Bleem et al. 2014)
- XXM-XXL survey ~25deg² (PI: Pierre Xray Masses)
- XXL-DECam survey ~25deg2 (PI: Lidman –ugriz photometry, 25 AB mag)
- VISTA (VHS Survey ((McMahon et al. shallow JHK photometry, ~20-21 AB mag)
- Herschel/SPIRE (Holder et al. 2013)
- ATCA (16cm, down to 40µJy/beam)
- DES Survey (24 AB mag)

Spitzer selection of z> 1.3 galaxies : 1.6 µm stellar 'bump'

SSDF implementation: [3.6], [4.5] color + All-sky SuperCosmos I-band

The SuperCOSMOS Sky Surveys (SSS) archive holds the object catalogue data extracted from scans of photographic Schmidt survey plates (i.e., POSS II + UKST) in B, R, I bands.

Homogeneous coverage over the entire 94 deg2 Spitzer survey down to I = 20.45 (AB)

High-z Clusters Search Algorithm

- Counts in cell analysis

- ΔN = Completenesscorrected excess number of objects with respect to the local background with:

- [3.6] [4.5] **>** –0.1,
- 19.5 < [4.5] < 21.46
- **I >** 20.45

within 1.0' radius

Rettura et al. 2014

Sample Purity

• Determine purity, \mathbf{f}_{pure} as a function of the detection significance \mathbf{X}_{f} , defined as:

$$f_{\text{pure}}(X_f) = \frac{N_{\text{real}}}{N_{\text{tot}}} = 1 - \frac{N_{\text{false}}}{N_{\text{tot}}},$$

- We run our cluster finding algorithm on comparable-depth observations from the IRAC Shallow Cluster Survey (ISCS) (Eisenhardt et al. 2004), matched with SuperCOSMOS data.
- The ISCS is a wide-field IR-selected galaxy cluster survey carried out using 90s Spitzer /IRAC imaging of the 8.5 deg2 Boötes field of the NOAO Deep, Wide-Field Survey (NDWFS, Jannuzi & Dey 1999).
- We estimate a purity of ~80% at z>1.3 from comparison with accurate photozs (11bands) and large specz campaign in Boötes that resulted in 18 confirmed 1.0 < z < 1.9 clusters (Brodwin+11).

$$X_f = 5.2 \rightarrow f_{pure} = 0.80$$

SSDF cluster finding algorithm applied to Boötes field

SSDF cluster finding algorithm applied to SWIRE

SWIRE-CDFS (7.8deg²)

Lidman et al. 2012, Wilson et al. 2014, in prep.

- SpARCS CDFS-44 (left)
 - z_spec= 1.626
 - 2nd most significant overdensity in field

- SpARCS CDFS-41
 - z_spec= 1.368
 - 6th most significant overdensity in field

SWIRE XMM (9.1 deg²)

- J022427-032354 (right)
 - z_spec= 1.63
 - 1st most significant overdensity in field.

Muzzin et al. 2013

SWIRE ELAIS-S1 (6.8 deg²)

- GCLASSJ0035
 - z_spec =1.335
 - 1st most
 significant
 overdensity in
 field.

Wilson et al. 2009

Other SWIRE fields

- Lockman Hole
 - 11.1 deg²
 - SpARCS Lockman-77
 - z_spec= 1.4

ELAIS-N1

- 9.3 deg²
- No z > 1.3 spectroscopically confirmed clusters yet.

- ELAIS-N2
 - 4.1 deg^2
 - No z > 1.3
 spectroscopicall
 y confirmed
 clusters yet.

Cluster Candidates at z>1.3 in the SSDF

279 candidates

X_f > 5.2

Rettura et al. 2014

SSDF-CL J2339-5531

SSDF-CL J2340-5403

Sample properties : Redshift Distribution

Rettura et al. 2014

Sample properties : Clustering (of Clusters) Analysis

Strong clustering signal

Number density and r0 are consistent with Λ CDM predictions (Springel et al. 2005)

Angular Correlation Function

Best-fit results for the number density, the characteristic minumum mass, the mean mass, the bias and the angular correlation length of the SSDF cluster sample as found by the density and the clustering fits.

	Clustering
$n_c \ (10^{-7} h^3 { m Mpc}^{-3})$	$0.7\substack{+6.3 \\ -0.6}$
$M_{ m min}~(10^{14} h^{-1} M_{\odot})$	$1.5^{+0.9}_{-0.7}$
$M_{ m mean}~(10^{14} h^{-1} M_{\odot})$	$1.9^{+1.0}_{-0.8}$
b_c	10.8 ± 2.5
$r_0 \ (h^{-1}\mathrm{Mpc})$	32 ± 7

Rettura et al. 2014

Sample properties : Mass-Redshift Distribution

- No detections in 1st generation SPT cluster catalog (Reichardt et al. 2013)
- → The two samples do not overlap in mass-redshift space
- SPTpol will soon detect most of them?

Present:

- New sample of cluster candidates of galaxies at 1.3 < z < 2.0 over the 94 deg² Spitzer survey of the SPT field.
- 120s of Spitzer data and Scans of photographic plates finds clusters up to z~2 with an 80% purity.
- Strong clustering
- n_c, r₀ values are consistent with previous observational studies and match expectations based on ΛCDM high-resolution simulations.
- The sample has a mean mass $M_{mean} = 1.9 \times 10^{14} M_{\odot}$.
- → Will evolve into massive clusters (> $5 \times 10^{14} M_{\odot}$) at z = 0.2

Near Future Directions:

- Magellan/IMACS spectroscopy data taken to assign cluster membership (data reduction ongoing)
- VLT/KMOS spectroscopy (Mei's talk) of Photoz-selectted in the 25deg2 overlapping area with deep DECam optical data (data reduction ongoing)

CONCLUSION:

Ongoing large Spitzer cluster surveys will provide high-redshift targets for WFIRST:

- enabling unique, exciting, synergic, multiwavelength studies of the Spitzerselected sample
- providing training sets to identify additional high-redshift clusters outside of the Spitzer footprint.