WFIRST Observations of Milky Way Satellites

Josh Simon Carnegie Observatories

1. IMF Variations with Galactic Environment

 Observations now provide compelling evidence for a varying IMF

Conroy & van Dokkum (2012)

Cappellari et al. (2012)

But: Existing Evidence is Indirect

 From space, <u>direct</u> measurements are possible for nearby galaxies

Kalirai et al. (2012)

The IMF at Low Metallicity

Figure courtesy of Marla Geha

What Is the Physics Driving the IMF?

 Galaxy parameter space is very sparsely sampled so far

Geha et al. (2013)

The IMF with WFIRST

 Efficiency is ~10× Hubble from near-IR wavelengths plus field of view

2. The Nature of Dark Matter

• Navarro, Frenk, & White (1996) profile

$$\rho(r) \propto \frac{1}{(r/r_s)(1 + r/r_s)^2}$$

Observed Distribution of Dark Matter Central Slopes

Average DM profile has α = 0.63 ± 0.28

Adams et al. (2014)

Lower Mass Galaxies Are the Key

• Galaxies with $M_{vir} \le 10^{10} M_{\odot}$ ($M_* \le 10^7 M_{\odot}$) should be unaffected by feedback

Governato et al. (2012)

Dwarf Spheroidals as DM Probes

- Closest and most dark matter-dominated galaxies known
 - luminosities from 10³ to 10⁷ L_{\odot}
 - sizes from 30 to 1000 pc
 - masses of ~10 $^9~M_{\odot}$
- But: radial velocities provide only one component of the 3D motion of each star

Dwarf Spheroidals as DM Probes

dSph Density Profile Results

Fornax

- $\gamma = 0.39^{+0.37}_{-0.43}$ (Walker & Penarrubia 2011)
- core (Jardel & Gebhardt 2012)
- core or cusp (Breddels & Helmi 2013)
- Sculptor
 - core or cusp (Battaglia et al. 2008)
 - $\gamma = 0.05^{+0.39}_{-0.51}$ (Walker & Penarrubia 2011)
 - core (Amorisco & Evans 2012)
 - $\gamma = 0 \pm 1.2$ (Breddels et al. 2013)
 - core or cusp (Breddels & Helmi 2013)
 - $\gamma = 0$ or 1.2 (Richardson & Fairbairn 2014)

dSph Proper Motions with WFIRST

- Combining radial velocities with proper motions <u>measures</u> orbital anisotropy
 5 km s⁻¹ ~ 16 μas yr⁻¹ (measurable in 5 years)
 - **ELT** proper motions

40"

O QSO O Leo II members

WFIRST proper motions

3. Formation of the Faintest Dwarfs

 SDSS revealed a new population of incredibly faint dwarf galaxies

Pre-SDSS dwarf

SDSS dwarf

Belokurov et al. (2006b)

Do L < 10³ L_☉ Dwarfs Exist Beyond 50 kpc?

Ultra-faint dwarfs only detectable in SDSS if they are very nearby

Tollerud et al. (2008)

Deep Ground-Based Surveys Require Intensive Follow-up

LSST will find hundreds of objects like these - which ones are dwarfs?

Walsh et al. (2009)

Deep Ground-Based Surveys Require Intensive Follow-up

Walsh et al. (2009)

Ultra-Faint Dwarfs in WFIRST HLS

- WFIRST will provide a <u>clean</u> sample of dwarfs out to ~2.5 Mpc without follow-up
 - Estimated discoveries:

 $5 \pm 2 L > 10^{3} L_{\odot}$ Milky Way satellites (Hargis et al. 2014) 28 $\pm 15 L < 10^{3} L_{\odot}$ Milky Way satellites (Hargis et al. 2014) 58 L > 10³ L_{\odot} dwarfs beyond 300 kpc (Garrison-Kimmel et al.

Garrison-Kimmel et al. (2014)

2014)

Local Group Science with WFIRST

- Direct measurements of the IMF
 - Efficient determination of IMF variation with [Fe/H] and mass
 - Robust GO and/or Local Group Legacy program
- Internal proper motions in dSphs
 - Will provide cleanest possible cusp/core measurements
 - Requires maximizing WFIRST astrometric performance
- Census of the faintest dwarfs
 - Do dwarfs become ultra-faint via nature or nurture?
 - The bigger the High Latitude Survey, the better