How WFIRST can help us constrain the physics of galaxy formation

rachel somerville Rutgers University

- diversity of galaxy morphology, structure, and stellar populations
- scaling relations between global and structural & kinematic properties (e.g.
- m_{*}, B/T, r, V, M_{BH}); evolve over cosmic time in interesting ways
- strong correlation between stellar populations (SF history) and morphology – in place since z~2

Pls: S. Faber & H. Ferguson e.g. Hubble Deep Fields, GOODS, GEMS, STAGES AEGIS, COSMOS, Hubble Ultra-deep Fields, CANDELS, 3D-HST

the connection between quenching and structural evolution

- quenching, size, and morphological transformatic are all occurring, but at different rates (slow track, fast track)
- strongest predictor of quenching at every epoch seems to be central (<~1kpc) density or B/T

see also Bell et al. 2008, 2012; Cheung+'12; Fang+'13; Wuyts+11; Lang+14; Barro+ in prep

E. Choi et al. in prep.

CANDELS analysis by Viraj Pandya after Barro et al. 2013

bulge mass McConnell & Ma 2013 Sersic index Savorgnan et al. 2013

Galaxy Conformity

galaxies seem to "know about" the properties of their neighbors out to large distances

cyan: highest 90% centrals; blue 1st quartile, green: 2nd quartile, black: 3rd quartile, red: 4th

Kauffmann et al. 2013; Weinmann et al. 2006 – based on SDSS nearby galaxy sample

The Λ CDM (dark energy + cold dark matter) paradigm provides us with a rich and predictive framework within which to calculate dark matter halos grow over time

Hirschmann et al. 2012

impact of stellar feedback on disk structure

efficient stellar-driven winds: the key to formation of realistic galactic disks

- 4. reduces fraction of stars acquired via mergers/accretion (relative to 'in situ' formation)
- 5. increases gas fraction and amount of gas accreted/ejected/accreted multiple times

see also Brook et al. 2011, 2012 Guedes et al. 2011 Scannapieco et al. 2011 Agertz et al. 2011 Christensen et al. 2012

AGN feedback

- size-mass scaling relations
- size evolution
- fraction of accreted/in situ
- quenching very sensitive to AGN feedback!

Choi et al. 2014; Choi et al. in prep w/ J. Ostriker, T. Naab, L. Oser, R. Brennan

project

- measure m_* , sSFR, B/T, Σ (1kpc), good redshifts over about 10 deg²
- divide into stellar mass and redshift bins and study correlations between structural & SF properties across scales from kpc to several Mpc
- use DM maps from lensing and X-ray follow-up to better understand environments
- get cold gas masses from ALMA/SKA, etc
- study CGM with absorption lines

summary

- understanding the details of "feedback processes" connected with stars, SNae and AGN is the greatest open challenge for galaxy formation models
- studying the correlations between galaxies' global properties, stellar populations, and structural scaling relations and their evolution over time is a powerful way to constrain these processes
- galaxy properties are correlated over a surprisingly large range of scales – poorly understood – important if we want to use emission line selected samples to study dark energy/cosmology!
- only WFIRST will be able to collect high resolution imaging over large enough fields to answer these questions

z = 2NOAO Deep Wide Field Survey 1 degree = 90 Mpc COSMOS GOODS-N HDF-N SDF UKIDSS-UDS **ECDFS** GOODS-S HUDF Madau & Dickinson 2014

- 'staged' assembly: massive galaxies form earlier and more rapidly
- Abundance matching (SHAM) constraints on stellar fractions to z~4

Behroozi et al. 2013 see also Moster et al. 2013

- quiescent galaxies more compact
- sizes evolve more rapidly
- mass-dependent size evolution (structural downsizing)

- SF galaxies more extended
- sizes evolve slowly
- self-similar size evolution

van der Wel et CANDELS+3D-HST 2014

- galaxy structure and location wrt the SF sequence are linked
- strong observed correlation between quiescent fraction and bulge mass, morphology, central density

compactness

correlation between internal structure and sSFR "knows about" properties of central galaxy even Mpc away!

