

TESS and Galactic Science

Keivan Stassun

WFIRST Meeting
18 November 2014

Preliminary TESS Mission Schedule

Activity	Date	Status
Systems Requirement Review	12-13 Feb 2014	✓ Completed
Preliminary Design Review	8-11 Sep 2014	✓ Completed
Mission Confirmation	31 Oct 2014	✓ Completed
Launch Vehicle Selection	mid-December 2015	Upcoming
Critical Design Review	18-21 May 2015	Upcoming
Systems Integration Review	4 Oct 2016	Planned
Launch Readiness Review	2 Aug 2017	Planned
Science Mission Complete	8 Oct 2020	Planned

	· · · · · · · · · · · · · · · · · · ·	
Entrance pupil diameter	10.5 cm	
Bandpass	600-1000 nm	
Field of view	24° x 24°	
Cadence for target stars	2 min	
Cadence for full frame images	30 min	
Nominal mag. Range	I = 4-16	

TESS Baseline Science Requirements

- BSR1: TESS shall perform a wide-field sky survey sensitive to transiting planets with orbital periods of less than 10 days. In this survey, TESS shall monitor >200,000 stars spread over the celestial sphere with a photometric sensitivity sufficient to permit detection of transiting planets with a radius ≥ 2.5 R_{Earth}.
- ◆ BSR2: TESS shall perform a concurrent [narrow field] sky survey sensitive to transiting planets with <u>periods of 120 days</u> or more. In this survey, TESS shall monitor <u>>10,000 stars in</u> regions centered on the ecliptic poles with a photometric sensitivity sufficient to permit detection of transiting planets with a radius ≥ 2.5 R_{Earth}.
- ◆ BSR3: The TESS team shall assure that masses of fifty (50) planets with radii less than 4 R_{Earth} are determined.

Simulated TESS detections

- detectable planets around pre-selected target stars
- detectable planets around other stars in full-frame images

Simulated TESS detections

Opportunities for Galactic Science

30-360 days, 60-600 ppm lightcurves for stars over all sky with I<12 and better than ~0.01 mag for 12<I<16

- Using 2-min cadence
 - eclipsing binaries for fundamental parameters
 - asteroseismology, mainly for red giants (TESS for nearby stars, WFIRST for distant stars... compare stellar properties in different environments?)
 - stellar granulation "flicker"... accurate gravities (ages) for many many stars (extend this to IR for WFIRST?)

Prospects for p-mode detection

Stellar gravities (ages) from granulation "flicker"

- Stellar log *g* accurate to ~0.15 dex
- For dwarfs: ~30 ppm (visible light)
- For giants: ~500 ppm (visible light)
- Flicker detectable down to ~20% of shot noise... as long as shot noise is well behaved and characterized!
- Granulation amplitudes probably much lower in the IR...

(Bastien et al., Nature, 2013)

Opportunities for Galactic Science

30-350 days, 60-600 ppm lightcurves for stars over all sky with I<12 and better than ~0.01 mag for 12<I<16

- Using Full Frame Images:
 - lightcurves of late type stars weather and rotation of late M dwarfs and a few L/T dwarfs
 - rotation for ~all stars in nearby open clusters
 - Better lightcurves for all known variable stars in the sky than ever before, by a lot
 - Kepler-level lightcurves for all known EBs except those found by OGLE, et al

Opportunities for Galactic Science

A WFIRST coronograph could be a great tool for studying TESSdetected systems. The TESS planets themselves would be too short-period for even a coronograph, but one could:

- look for long-period planets in the TESS systems
- look at the circumstellar environments for dust or debris disks
- eclipsing disks?

Stellar variability from Basri et al. (2013)

Overall TESS Science Status

- Emerging Science Case for Full-Frame Images (FFI)
 - Resource for Broader Astronomical Community
 - Strongly Complements Large Synoptic Survey Telescope (LSST)
 - LSST: Stars fainter than 16th magnitude
 - TESS: Stars brighter than 16th magnitude

TESS Working Groups

Working group	Chairs	
Planet simulations	Josh Winn	
Target star selection	Keivan Stassun, Josh Pepper	
Follow-up observations	Dave Latham	
Asteroseismology	Jørgen Christensen-Dalsgaard, Hans Kjeldsen	
"Serendipitous" science	Peter McCullough, Garrett Jernigan	
Atmospheric characterization	Jacob Bean	
Habitability	Lisa Kaltenegger	
Eclipsing binaries	Bill Welsh, Nader Haghighipour	

Conference at MIT:

"Science with TESS"

30 Sep-2 Oct 2015

SOC Chair: Sara Seager

LOC Chair: Zach Berta

Heighten General Astronomical Interest in TESS

Especially for non-exoplanet community

TESS Science Objectives

- OBJECTIVE 1: Identify a diverse sample of transiting exoplanets with radii less than 2.5 R_{Earth} and orbital periods of up to 10 days orbiting the brightest stars in the solar neighborhood.
- ◆ OBJECTIVE 2: Identify a sample of transiting exoplanets with radii less than 2.5 R_{Earth} and orbital periods 120 days or more orbiting bright stars situated near the ecliptic poles, locations that are optimal for JWST followup.
- ◆ OBJECTIVE 3: Establish the masses of a sample of TESSlocated transiting planets with radii less than 4 R_{Earth} by means of analytical techniques* and/or precise radial velocity (PRV)** measurements.

^{**} PRV measurements require TESS-committed ground-based assets.

^{*} Analytical techniques include asteroseismology, transit time variations,...

TESS Level One Baseline Requirements

Objectives	Baseline Science Requirements	Baseline Technical Requirements	Baseline Data Requirements
Objective 1: Find planets with radius R<2.5R _E and periods P<10 days	BSR 1: Monitor 200,000 stars over celestial sphere with sensitivity to find exoplanets with R=2.5R _E and P≤10 days	BTR 1: Two-year mission after two-month checkout	BDR 1: ≥95% of data collected delivered to the SOC
Objective 2: Find planets with R<2.5R _E and P<120 days in JWST CVZ	BSR 2: Monitor 10,000 stars near ecliptic poles with sensitivity to find exoplanets with R=2.5R _E and P≥120 days	BTR 2: Collect data from each star for ≥20 days	BDR 2: Deliver processed data to MAST every 4 months
Objective 3: Measure the masses of a sample of exoplanets with R<4R _E	BSR 3: Measure the masses of 50 planets with R<4R _E	BTR 3: Instrument effective area A _{eff} ≥50 cm ² in 600-1000 nm bandpass	BDR 3: Final delivery of processed data to MAST at end of Phase F
		BTR 4: Systematic error floor of 60 ppm for I=8 in one hour	BDR 4: No proprietary period for data at archive
		BTR 5: Temporal resolution ≤2 minutes	
		BTR 6: Data processing and ground follow-up sufficient to measure masses of 50 planets with R<4R _E	

TESS Level One Threshold Requirements

Objectives	Threshold Science Requirements	Threshold Technical Requirements	Threshold Data Requirements
Objective 1: Find planets with radius R<2.5R _E and periods P<10 days	TSR 1: Monitor 100,000 stars over celestial sphere with sensitivity to find exoplanets with R=2.5R _E and P≤10 days	TTR 1: Mission designed to execute survey of 100,000 stars	TDR 1: ≥95% of data collected delivered to the SOC
Objective 2: Find planets with R<2.5R _E and P<120 days in JWST CVZ	TSR 2: Monitor 5,000 stars near ecliptic poles with sensitivity to find exoplanets with R=2.5R _E and P≥120 days	TTR 2: Collect data from each star for ≥20 days	TDR 2: Deliver processed data to MAST every 4 months
Objective 3: Measure the masses of a sample of exoplanets with R<4R _E	TSR 3: Measure the masses of 35 planets with R<4R _E	TTR 3: Instrument effective area A _{eff} ≥40 cm ² in 600-1000 nm bandpass	TDR 3: Final delivery of processed data to MAST at end of Phase F
		TTR 4: Systematic error floor of 80 ppm for I=8 in one hour	TDR 4: No proprietary period for data at archive
		TTR 5: Temporal resolution ≤5 minutes	
		TTR 6: Data processing and ground follow-up sufficient to measure masses of 35 planets with R<4R _E	