TESS and Galactic Science Keivan Stassun WFIRST Meeting 18 November 2014 ### Preliminary TESS Mission Schedule | Activity | Date | Status | |----------------------------|-------------------|-------------| | Systems Requirement Review | 12-13 Feb 2014 | ✓ Completed | | Preliminary Design Review | 8-11 Sep 2014 | ✓ Completed | | Mission Confirmation | 31 Oct 2014 | ✓ Completed | | Launch Vehicle Selection | mid-December 2015 | Upcoming | | Critical Design Review | 18-21 May 2015 | Upcoming | | Systems Integration Review | 4 Oct 2016 | Planned | | Launch Readiness Review | 2 Aug 2017 | Planned | | Science Mission Complete | 8 Oct 2020 | Planned | | | | | | | · · · · · · · · · · · · · · · · · · · | | |-------------------------------|---------------------------------------|--| | Entrance pupil diameter | 10.5 cm | | | Bandpass | 600-1000 nm | | | Field of view | 24° x 24° | | | Cadence for target stars | 2 min | | | Cadence for full frame images | 30 min | | | Nominal mag.
Range | I = 4-16 | | ### TESS Baseline Science Requirements - BSR1: TESS shall perform a wide-field sky survey sensitive to transiting planets with orbital periods of less than 10 days. In this survey, TESS shall monitor >200,000 stars spread over the celestial sphere with a photometric sensitivity sufficient to permit detection of transiting planets with a radius ≥ 2.5 R_{Earth}. - ◆ BSR2: TESS shall perform a concurrent [narrow field] sky survey sensitive to transiting planets with <u>periods of 120 days</u> or more. In this survey, TESS shall monitor <u>>10,000 stars in</u> regions centered on the ecliptic poles with a photometric sensitivity sufficient to permit detection of transiting planets with a radius ≥ 2.5 R_{Earth}. - ◆ BSR3: The TESS team shall assure that masses of fifty (50) planets with radii less than 4 R_{Earth} are determined. ### Simulated TESS detections - detectable planets around pre-selected target stars - detectable planets around other stars in full-frame images #### Simulated TESS detections ### Opportunities for Galactic Science ## 30-360 days, 60-600 ppm lightcurves for stars over all sky with I<12 and better than ~0.01 mag for 12<I<16 - Using 2-min cadence - eclipsing binaries for fundamental parameters - asteroseismology, mainly for red giants (TESS for nearby stars, WFIRST for distant stars... compare stellar properties in different environments?) - stellar granulation "flicker"... accurate gravities (ages) for many many stars (extend this to IR for WFIRST?) ### Prospects for p-mode detection ### Stellar gravities (ages) from granulation "flicker" - Stellar log *g* accurate to ~0.15 dex - For dwarfs: ~30 ppm (visible light) - For giants: ~500 ppm (visible light) - Flicker detectable down to ~20% of shot noise... as long as shot noise is well behaved and characterized! - Granulation amplitudes probably much lower in the IR... (Bastien et al., Nature, 2013) ### Opportunities for Galactic Science # 30-350 days, 60-600 ppm lightcurves for stars over all sky with I<12 and better than ~0.01 mag for 12<I<16 - Using Full Frame Images: - lightcurves of late type stars weather and rotation of late M dwarfs and a few L/T dwarfs - rotation for ~all stars in nearby open clusters - Better lightcurves for all known variable stars in the sky than ever before, by a lot - Kepler-level lightcurves for all known EBs except those found by OGLE, et al ### Opportunities for Galactic Science A WFIRST coronograph could be a great tool for studying TESSdetected systems. The TESS planets themselves would be too short-period for even a coronograph, but one could: - look for long-period planets in the TESS systems - look at the circumstellar environments for dust or debris disks - eclipsing disks? ### Stellar variability from Basri et al. (2013) ### Overall TESS Science Status - Emerging Science Case for Full-Frame Images (FFI) - Resource for Broader Astronomical Community - Strongly Complements Large Synoptic Survey Telescope (LSST) - LSST: Stars fainter than 16th magnitude - TESS: Stars brighter than 16th magnitude ### **TESS Working Groups** | Working group | Chairs | | |------------------------------|--|--| | Planet simulations | Josh Winn | | | Target star selection | Keivan Stassun, Josh Pepper | | | Follow-up observations | Dave Latham | | | Asteroseismology | Jørgen Christensen-Dalsgaard,
Hans Kjeldsen | | | "Serendipitous" science | Peter McCullough, Garrett
Jernigan | | | Atmospheric characterization | Jacob Bean | | | Habitability | Lisa Kaltenegger | | | Eclipsing binaries | Bill Welsh, Nader Haghighipour | | ### **Conference at MIT:** "Science with TESS" 30 Sep-2 Oct 2015 **SOC Chair: Sara Seager** **LOC Chair: Zach Berta** Heighten General Astronomical Interest in TESS Especially for non-exoplanet community ### TESS Science Objectives - OBJECTIVE 1: Identify a diverse sample of transiting exoplanets with radii less than 2.5 R_{Earth} and orbital periods of up to 10 days orbiting the brightest stars in the solar neighborhood. - ◆ OBJECTIVE 2: Identify a sample of transiting exoplanets with radii less than 2.5 R_{Earth} and orbital periods 120 days or more orbiting bright stars situated near the ecliptic poles, locations that are optimal for JWST followup. - ◆ OBJECTIVE 3: Establish the masses of a sample of TESSlocated transiting planets with radii less than 4 R_{Earth} by means of analytical techniques* and/or precise radial velocity (PRV)** measurements. ^{**} PRV measurements require TESS-committed ground-based assets. ^{*} Analytical techniques include asteroseismology, transit time variations,... ### TESS Level One Baseline Requirements | Objectives | Baseline Science
Requirements | Baseline Technical
Requirements | Baseline Data
Requirements | |---|--|--|--| | Objective 1: Find planets with radius R<2.5R _E and periods P<10 days | BSR 1: Monitor 200,000 stars over celestial sphere with sensitivity to find exoplanets with R=2.5R _E and P≤10 days | BTR 1: Two-year mission after two-month checkout | BDR 1: ≥95% of data collected delivered to the SOC | | Objective 2: Find planets with R<2.5R _E and P<120 days in JWST CVZ | BSR 2: Monitor 10,000 stars near ecliptic poles with sensitivity to find exoplanets with R=2.5R _E and P≥120 days | BTR 2: Collect data from each star for ≥20 days | BDR 2: Deliver processed data to MAST every 4 months | | Objective 3: Measure the masses of a sample of exoplanets with R<4R _E | BSR 3: Measure the masses of 50 planets with R<4R _E | BTR 3: Instrument effective area A _{eff} ≥50 cm ² in 600-1000 nm bandpass | BDR 3: Final delivery of processed data to MAST at end of Phase F | | | | BTR 4: Systematic error floor of 60 ppm for I=8 in one hour | BDR 4: No proprietary period for data at archive | | | | BTR 5: Temporal resolution ≤2 minutes | | | | | BTR 6: Data processing and ground follow-up sufficient to measure masses of 50 planets with R<4R _E | | ### TESS Level One Threshold Requirements | Objectives | Threshold Science
Requirements | Threshold Technical
Requirements | Threshold Data
Requirements | |---|--|---|--| | Objective 1: Find planets with radius R<2.5R _E and periods P<10 days | TSR 1: Monitor 100,000 stars over celestial sphere with sensitivity to find exoplanets with R=2.5R _E and P≤10 days | TTR 1: Mission designed to execute survey of 100,000 stars | TDR 1: ≥95% of data collected delivered to the SOC | | Objective 2: Find planets with R<2.5R _E and P<120 days in JWST CVZ | TSR 2: Monitor 5,000 stars near ecliptic poles with sensitivity to find exoplanets with R=2.5R _E and P≥120 days | TTR 2: Collect data from each star for ≥20 days | TDR 2: Deliver processed data to MAST every 4 months | | Objective 3: Measure the masses of a sample of exoplanets with R<4R _E | TSR 3: Measure the masses of 35 planets with R<4R _E | TTR 3: Instrument effective area A _{eff} ≥40 cm ² in 600-1000 nm bandpass | TDR 3: Final delivery of processed data to MAST at end of Phase F | | | | TTR 4: Systematic error floor of 80 ppm for I=8 in one hour | TDR 4: No proprietary period for data at archive | | | | TTR 5: Temporal resolution ≤5 minutes | | | | | TTR 6: Data processing and ground follow-up sufficient to measure masses of 35 planets with R<4R _E | |