Binary Stars and Time-Domain Astronomy with WFIRST-AFTA

Rachel Street, LCOGT On behalf of Marc Pinsonneault

Low mass binaries

- Low mass stars and L, T brown dwarfs
- Multiple possible formation mechanisms (core accretion, gravitational instability, fragmentation)

Multiplicity is one key to understanding formation mechanisms

 \rightarrow Need distributions of binary separations, mass ratios, eccentricity

Wide-Field Infrared Survey Telescor

From hydrodynamic simulation of fragmentation process [Bate 2009]

Probing the Shape of the IMF at low masses

 Deep, multi-epoch imaging of young star clusters and star forming regions

 \rightarrow could detect brown dwarfs down to planets 5M_{Jup} in 100Myr old clusters or lower.

Lodieu et al. 2012

Probing the Shape of the IMF at low masses

High cadence survey data will provide astrometry, photometry \rightarrow detect binaries via image, astrometric motion, eclipses

 \rightarrow binarity fraction \rightarrow orbital parameters \rightarrow mass, radii

Comparing properties of brown dwarf and stellar binaries Allers, 2012

Binary Microlenses

Microlensing Survey will be sensitive to binaries of all mass ratios with orbital separations ~ 0.3—30 AU

 \rightarrow Comparison of binary populations in different region of the Galaxy

→ Sensitive to binarity even for extremely low-mass brown dwarf hosts

Planets in Binaries from Microlensing

Properties of Giants Stars

- CoRoT, Kepler have proven the value of asteroseismology in determining fundamental properties and physics of stars.
- Impacts on stellar evolutionary models, transiting planet models, etc.
- Red giants stars measured to date rather faint
 - \rightarrow additional constraints uncertain [Kallinger et al 2010]

• WFIRST astrometry will enable more precise mass measurements from astroseismology

Asteroseismology of Giant Stars

Asteroseismology measures mean density and surface density, from which we can derive R, M [Kallinger et al. 2010]:

$$\frac{\rho}{\rho_{\odot}} \simeq \left(\frac{\langle \Delta \nu_{nl} \rangle}{\langle \Delta \nu_{nl} \rangle_{\odot}}\right)^2,$$

$$rac{g}{g_{\odot}}\simeq rac{
u_{
m max}}{
u_{
m max,\odot}}igg(rac{T_{
m eff}}{T_{
m eff,\odot}}igg)^{1/2},$$

Where <vnl> is the large-frequency separation

 V_{max} is the maximum oscillation power

These can be combined to extract the stellar radius and mass:

$$\frac{R}{R_{\odot}} \simeq \frac{\nu_{\rm max}}{\nu_{\rm max,\odot}} \left(\frac{\langle \Delta \nu_{nl} \rangle}{\langle \Delta \nu_{nl} \rangle_{\odot}}\right)^{-2} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{1/2},$$
$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\rm max}}{\nu_{\rm max,\odot}}\right)^{3} \left(\frac{\langle \Delta \nu_{nl} \rangle}{\langle \Delta \nu_{nl} \rangle_{\odot}}\right)^{-4} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{3/2},$$

- Need to verify that these relations produce true mass measurements.
- Some eclipsing binaries have yielded radii and masses

Gould et al. 2014

Asteroseismology + Parallaxes

Parallaxes from WFIRST will provide an independent check on the stellar radii derived from asteroseismology if the surface brightness can be estimated.

Independent masses can then be derived from:

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\langle \nu_{nl} \rangle}{\langle \nu_{nl} \rangle_{\odot}}\right)^2 \left(\frac{R}{R_{\odot}}\right)^3 \quad \text{If S/N is high}$$
$$\frac{M}{M_{\odot}} \simeq \frac{\nu_{\max}}{\nu_{\max,\odot}} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2} \left(\frac{R}{R_{\odot}}\right)^2 \quad \text{For lower S/R}$$

 \rightarrow Combining these measurements with the HR diagram, we can extract

* information about chemical evolution (helium)

* binaries: merger products with unusual masses in the post-MS (otherwise difficult to detect in standard HR diagrams.)

Summary

- Distributions of low-mass binary parameters will give clues to formation scenarios
- WFIRST will build statistically significant samples through deep imaging, microlensing
- Sensitive to planets in binary systems

