# Dark energy interests in Japan: Subaru SuMIRe HSC/PFS project

#### Masahiro Takada (Kavli IPMU/U. Tokyo)







@WFIRS meeting, Pasadena, Nov 2014

#### Subaru Telescope



#### **Prime-Focus Instrument**

![](_page_1_Picture_3.jpeg)

# Subaru Telescope

@ summit of Mt. Mauna Kea (4200m), Big Island, Hawaii

![](_page_2_Picture_0.jpeg)

#### SuMIRe = Subaru Measurement of Images and Redshifts

H. Murayama

- IPMU director Hitoshi Murayama (PI) funded by the Cabinet in Mar 2009, as one of the stimulus package programs
- Build wide-field camera (Hyper SuprimeCam) and wide-field multi-object spectrograph (Prime Focus Spectrograph) for the Subaru Telescope (8.2m)
- Explore the fate of our Universe: dark matter, dark energy
- Keep the Subaru Telescope a world-leading telescope in the TMT era
- Precise images of ~IB galaxies
- Measure distances of ~4M galaxies

![](_page_2_Picture_9.jpeg)

# **HSC** Collaboration

International collaboration: Japan, Princeton, Taiwan

![](_page_3_Picture_2.jpeg)

![](_page_3_Picture_3.jpeg)

# Hyper Suprime-Cam

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

- largest camera
- · 3m high
- weigh 3 ton
  - 104 CCDs (~0.9B pixels)

![](_page_4_Picture_7.jpeg)

![](_page_5_Picture_0.jpeg)

#### HSC Image of M31 (HSC FoV=1.8 sq. degrees)

![](_page_6_Picture_1.jpeg)

reduced by HSC pipeline (Princeton, Kavli IPMU, NAOJ)

![](_page_7_Picture_0.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

#### HSC Survey finally started (March 2014)! (5 years until 2019, 300 Subaru nights)

#### Subaru HSC image (riz: ~2.5hrs)

COSMOS HST (640 orbits: ~500hrs)

![](_page_11_Picture_3.jpeg)

typically ~0.7" for good weather

## **PFS Collaboration**

![](_page_12_Picture_1.jpeg)

![](_page_13_Figure_0.jpeg)

 $5 \mu$  accuracy in 7 iterations 9.5mm patrol area

Manan

![](_page_15_Picture_0.jpeg)

### **PFS Parameters**

#### Approved by Preliminary Design Review (March, 2013)

| Number of fibers        | 2400                                                 |                   |          |  |  |
|-------------------------|------------------------------------------------------|-------------------|----------|--|--|
| Field of view           | I.3 deg (hexagonal-diameter of circumscribed circle) |                   |          |  |  |
| Fiber diameter          | 1.13" diameter at center 1.03" at the edge           |                   |          |  |  |
| Spectrograph            | Blue                                                 | Red               | NIR      |  |  |
| Wavelength range [nm]   | 380-650                                              | 630-970 (706-890) | 940-1260 |  |  |
| Central resolving power | ~2350                                                | ~2900 (~5000)     | ~4200    |  |  |
| Detector type           | CCD                                                  | CCD               | HgCdTe   |  |  |

- Share WFC with HSC
- 4 spectrographs for 600 fibers each
- $\lambda = 380 1260$  nm with 3 arms ( $\Leftrightarrow 360 980$  nm for DESI)
- Fiber density: 2200/sq. degs (⇔ ~140 for 2.5m BOSS;
   ~600 for 4m DESI)
- The medium resolution mode (R~5000) for the red arm is *our baseline design*

![](_page_16_Picture_8.jpeg)

![](_page_17_Picture_0.jpeg)

Publ. Astron. Soc. Jpn (2014) 66 (1), R1 (1–51) doi: 10.1093/pasj/pst019 Advance Access Publication Date: 2014 February 17 Review

![](_page_17_Picture_2.jpeg)

R1-1

#### Review

#### Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph

Masahiro TAKADA,<sup>1,\*</sup> Richard S. ELLIS,<sup>2</sup> Masashi CHIBA,<sup>3</sup> Jenny E. GREENE,<sup>4</sup> Hiroaki AIHARA,<sup>1,5</sup> Nobuo ARIMOTO,<sup>6</sup> Kevin BUNDY,<sup>1</sup> Judith COHEN,<sup>2</sup> Olivier Doré,<sup>2,7</sup> Genevieve GRAVES,<sup>4</sup> James E. GUNN,<sup>4</sup> Timothy HECKMAN,<sup>8</sup> Christopher M. HIRATA,<sup>2</sup> Paul Ho,<sup>9</sup> Jean-Paul KNEIB,<sup>10</sup> Olivier LE Fèvre,<sup>10</sup> Lihwai LIN,<sup>9</sup> Surhud More,<sup>1</sup> Hitoshi MURAYAMA,<sup>1,11</sup> Tohru NAGAO,<sup>12</sup> Masami OUCHI,<sup>13</sup> Michael SEIFFERT,<sup>2,7</sup> John D. SILVERMAN,<sup>1</sup> Laerte Sodré, JR.,<sup>14</sup> David N. SPERGEL,<sup>1,4</sup> Michael A. STRAUSS,<sup>4</sup> Hajime SUGAI,<sup>1</sup> Yasushi SUTO,<sup>5</sup> Hideki TAKAMI,<sup>6</sup> and Rosemary WYSE<sup>8</sup>

<sup>1</sup>Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583

<sup>4</sup>Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544, USA

<sup>5</sup>Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

<sup>&</sup>lt;sup>2</sup>California Institute of Technology, 200 East California Blvd, Pasadena, CA 91125, USA

<sup>&</sup>lt;sup>3</sup>Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578

### Science Objectives: Three Pillars

All science cases are based on a spectroscopic follow-up of objects taken from the HSC imaging data

- Cosmology (~100 nights): 1400 sq. degrees
  - ~4M redshifts of emission-line galaxies
  - BAO at each of 6 redshift bins over 0.8<z<2.4
  - Cosmology with the joint experiment of WL and galaxy clustering (HSC/PFS)
- Galaxy Evolution (~100 nights): ~20 deg<sup>2</sup>, see J. Greene's talk!
  - A unique sample of galaxies ( $\sim IM$ ) up to  $z\sim 2$ , with the aid of the NIR arm
  - Dense sampling of faint galaxies (also many pairs of foreground/background gals)
  - Studying cosmic reionization with a sample of LAEs, LBGs and QSOs
- Galactic Archaeology (~100 nights): Milky Way/M31/dSphs
  - ~IM star spectra for measuring their radial velocities
  - Use the 6D phase-space structure, in combination with GAIA in order to study the origin of Milky Way (also use the M31 survey)
  - Use a medium-resolution-mode survey of ~0.1M stars to study the chemodynamical evolution of stars in Milky Way

### Unique capability of PFS: high performance

![](_page_19_Figure_1.jpeg)

- [OII] line (3727Å) feature used for cosmology survey
- Assuming baseline instrument parameters (fiber size, throughput, readout noise, etc.)
- *Conservative assumption:* 0.8" seeing, at FoV edge, 26 deg. zenith angle
- Included sky continuum & OH lines
  - The PFS design allows a matched S/N in Red and NIR arms  $\rightarrow$  a wide redshift coverage, **0.8**<**z**<**2.4** LSS more linear at higher *z*

#### Target selection of [OII] emitters

- Mock Catalog, based on the COSMOS 30 bands, zCOSMOS and DEEP2 (Jouvel et al. 2009, + further updates)
- The wide z-range allows an efficient target selection based on the color cut:

22.8<g<24.2 & -0.1<g-r<0.3

- 7847 targets per the PFS FoV (1.3 deg. diameter)~ 3×(# of PFS fibers)
- ~75% success rate for 2 visits of each field

![](_page_20_Figure_6.jpeg)

z>0.7 ELG efficiency, f<sub>hiz</sub>

![](_page_20_Figure_8.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

HSC/PFS has an opportunity to make a DE breakthrough before the ultimate surveys, Euclid, LSST and WFIRST

#### **PFS Galaxy Evolution**

See Jenny Greene's talk

 PFS also enables a spectroscopic survey of "general" galaxies at z~1-2 (a detection of continuum in each spectrum)

![](_page_24_Figure_3.jpeg)

Man

1100

 $\lambda$  (nm)

1200

1000

 $M_J = 23.50$ z = 1.89

22.50

 $M_J = 22.50$ z = 1.75

0.4 0.3

900

nanomaggies)

1.2 1.0 0.8

### Long Range Strategy of Subaru

- HSC & PFS allow for making Subaru Tel. a unique facility in 2020era: target obs ⇒ survey telescope
- HSC, PFS, GLAO major instruments in 2020era
- Various synergies with
  - GAIA (2013)
  - Euclid (2019)
  - LSST (2018 or 19? )
  - WFIRST (???)
  - TMT& E-ELT (???)

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

# Synergies btw PFS and WFIRST

![](_page_26_Picture_1.jpeg)

- Japanese community has *a strong interest* in WFIRST
- PFS can play a *unique role* for providing a massive, deep spectroscopic survey of galaxies
  - A training sample of WFIRST photo-z, also via cross-correlations (10-30 nights according to Jeff Newman; also see Menard et al. 14)
  - A more detailed SED measurement
- Other science cases need to be further explored (HSC narrow-band filters, HSC microlensing, PFS Ly-alpha, ...)
- A possible new high-latitude survey with PFS for WFIRST (the planned PFS survey, 2019-2023, so a plenty of time for the arrangement)

# Summary

- SuMIRe (Subaru Measurements of Images and Redshifts)
  - Hyper Suprime-Cam (HSC): 2014-19, ~1B gals, 1400 deg<sup>2</sup>
  - Prime Focus Spectrograph (PFS): 2019-22, ~4M spec-z, 1400 deg<sup>2</sup>
  - Imaging and spectroscopic surveys for the same region of the sky at the same telescope
- Strong interest in DE and survey astronomy in Japan
- Synergies/Complementarities of PFS with future
  - Unique capability: no any other (funded) massively-multiplexed spectrograph at 8-10m telescopes
  - Complementary to WFIRST: a training sample of photo-z's, a wider coverage of galaxy SED, dens pairs of gals, QSOs, ISMs ...
  - To have the synergies, some WFIRST regions need to be in northern hemisphere: a new high-latitude PFS survey for WFIRST?

#### PFS Cosmology Survey

| Redshift                                                                                  | Volume/FoV<br>(10 <sup>-4</sup> h <sup>-3</sup> Gpc <sup>3</sup> ) | # of galaxies<br>(per FoV) | Number density<br>(10 <sup>-4</sup> h <sup>3</sup> Mpc <sup>-3</sup> ) | bias | nP<br>@k=0.1 <i>h</i> Mpc <sup>-1</sup> |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------|------|-----------------------------------------|
| 0.8 <z<1.0< td=""><td>6.4</td><td>286</td><td>4.4</td><td>1.26</td><td>1.0</td></z<1.0<>  | 6.4                                                                | 286                        | 4.4                                                                    | 1.26 | 1.0                                     |
| 1.0 <z<1.2< td=""><td>7.8</td><td>438</td><td>5.6</td><td>1.34</td><td>1.25</td></z<1.2<> | 7.8                                                                | 438                        | 5.6                                                                    | 1.34 | 1.25                                    |
| 1.2 <z<1.4< td=""><td>8.8</td><td>762</td><td>8.6</td><td>1.42</td><td>1.82</td></z<1.4<> | 8.8                                                                | 762                        | 8.6                                                                    | 1.42 | 1.82                                    |
| 1.4 <z<1.6< td=""><td>9.7</td><td>534</td><td>5.5</td><td>1.5</td><td>1.13</td></z<1.6<>  | 9.7                                                                | 534                        | 5.5                                                                    | 1.5  | 1.13                                    |
| 1.6 <z<2.0< td=""><td>21</td><td>721</td><td>3.5</td><td>1.62</td><td>0.82</td></z<2.0<>  | 21                                                                 | 721                        | 3.5                                                                    | 1.62 | 0.82                                    |
| 2.0 <z<2.4< td=""><td>22</td><td>620</td><td>2.8</td><td>I.78</td><td>0.81</td></z<2.4<>  | 22                                                                 | 620                        | 2.8                                                                    | I.78 | 0.81                                    |

Total # of galaxies : 3361 (0.8<z<2.4) Area (100 clear nights): 1420 sq. degs.  $\rightarrow$  9 (Gpc/h)<sup>3</sup> = a factor 2×BOSS

- Need 2 visits to have high number densities of ELGs in each z-slice
- Assumed galaxy bias (poorly known): b=0.9+0.4z
- Assumed 2400 fibers; FoV of 1.35 degree diameter; S/N>9
  - Success rate (0.8<z<2.4; including the fiber allocation efficiency): 71%
  - Assumed 15min exp. of each visit; 5min (conservative) overhead of each visit

![](_page_29_Picture_0.jpeg)

### Backup slides

#### @ PFS collaboration meeting

![](_page_31_Picture_1.jpeg)

#### Fluxes relative to PanSTARRSOur Coadd 30s300s

visit = 1226

![](_page_32_Figure_2.jpeg)

#### From Robert Lupton

#### HSC-expected cosmological constraints

| Data                   | $w_{\mathrm{pivot}}$ | $w_a$ | FoM       | $\gamma_g$ | $m_{ u,{ m tot}}$ | $f_{\rm NL}$ | $n_s$ | $\alpha_s$ |
|------------------------|----------------------|-------|-----------|------------|-------------------|--------------|-------|------------|
| BOSS-BAO               | 0.064                | 1.04  | 15        |            | —                 | _            | 0.018 | 0.0057     |
| HSC(WL)-B (baseline)   | 0.080                | 0.86  | 15        | 0.15       | 0.16              | 30           | 0.014 | 0.0041     |
| HSC(WL)-O (optimistic) | 0.068                | 0.66  | 22        | 0.083      | 0.082             | 18           | 0.013 | 0.0040     |
| HSC(WL+SN)-B           | 0.043                | 0.60  | <b>39</b> | 0.15       | 0.16              | 30           | 0.014 | 0.0041     |
| HSC(WL+SN)-O           | 0.041                | 0.45  | 54        | 0.081      | 0.081             | 18           | 0.013 | 0.0040     |
| HSC-O+[BOSS-P(k)]      | 0.028                | 0.26  | 136       | 0.059      | 0.044             | 17           | 0.009 | 0.0023     |
| HSC-O+[BOSS+PFS]       | 0.023                | 0.22  | 194       | 0.057      | 0.031             | 17           | 0.009 | 0.0021     |

![](_page_33_Figure_2.jpeg)

 The HSC promises a significant improvement in the dark energy constraints and our understanding of the universe

## Research Highlight Combined probes: Lensing (imaging) + Clustering (spec-z)

![](_page_34_Picture_1.jpeg)

- Lensing: directly measure the DM distribution, but projected
- Clustering: 3D mapping of galaxy distribution; a much higher S/N, but galaxy bias uncertainty
- More, Miyatake, Mandelbaum, MT, Spergel, et al. (2014): CFHTLenS (3.6m imaging, only ~120 sq. deg) + BOSS (2.5m spec-z, 10000 sq. deg)

![](_page_34_Figure_5.jpeg)

**Research Highlight** 

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

### Filters & Depth

|    | g   | r   | i   | Z    | У    | <b>N</b> 3 | <b>N</b> 8 | N9  | NIO  |
|----|-----|-----|-----|------|------|------------|------------|-----|------|
| W  | 10  | 10  | 20  | 20   | 20   | -          | -          | -   | -    |
| D  | 84  | 84  | 126 | 210  | 126  | 84         | 68         | 252 | -    |
| UD | 420 | 420 | 840 | 1134 | 1134 | -          | 630        | 840 | 1050 |

![](_page_37_Figure_2.jpeg)

- Depth of each filter is carefully designed
- For HSC-Deep and Ultra-Deep, a combination of broad- and narrow-band filters allows to detect Lyman-alpha Emitters at z=2.2, 5.7, 6.6 and 7.3