

Exoplanets and Disk Imaging with Subaru

November 17 14:10 - (15+5 min)

Motohide Tamura The University of Tokyo & NAOJ Exoplanet Project Office & the SEEDS team

Period (days)

Targets for Current Exoplanet Direct Imaging

Mass (Jupiter Masses)

- Atmosphere from Spect.
- Teff, g from Spect.

<u>Some Directly Imaged Planets (Candidates)</u> around BD first, then A stars &YSOs, and finally G & B stars

<u>(not full list & SEEDS planets introduced in detail later)</u>

Some Directly Imaged Planets (Candidates)

only lower-mass and SS-scale ones

HD 95086b (A star; Rameau+13)

β Pic b (A star; Lagrange+10)

HD 95086 b HR 8799 bcde beta Pic b kappa And b

Around A/B stars Around G stars GJ 504 b (GJ 758 b)

Only 6 imaged planetary systems w/ mass $<14M_{Jup}$ and a<100 AUexcluding BD binary, of which 3 from SEEDS.

Wide-orbit planets can be detected currently only by direct imaging; Many are a>100 AU; only handful for <u>Solar-system-scale orbit planets</u>.

Difficulties with Direct Imaging

Huge contrast ratio between planet and star

- ~10^9 for Earth-Sun
- ~10^8 for Jupiter-Sun
- ~10^6 for young Jupiter-Sun
- Self-luminous giant planets are current main targets
- How to suppress bright star light?
- Speckle noise from bright central star
 - Not photon-noise but speckle noise limited observations
 - How to remove static speckle?
- Coronagraph
 - Ex. CIAO (previous) & HiCIAO (current)
- Various differential imaging techniques (PDI, SDI, ADI)

SEEDS –Strategic Explorations of Exoplanets and Disks with Subaru

- First "Subaru Strategic Program (SSP)" An open-use category
- 120 Subaru nights in 5 years from 2009; ~110 finished by now
- NIR direct imaging and census of giant planets in the outer regions (10 AU - 100 AU) around ~500 solar-type and massive stars
- Exploring **protoplanetary disks and debris disks** for the origin of their diversity and evolution at the same radial (orbital) regions
- Direct linking between planets and protoplanetary disks

>100AU scale w/ CIAO Resolution =0.1-0.2"

<u>Solar-System</u> Scale (<100AU) w/ **HiCIAO**

Resolution =0.05-0.1" Contrast Improved by ~10

SEEDS has 5 categories that cover targets of various ages.

Category	YSO	Moving Group	Open Cluster	Nearby Star	Debris Disk
Target	YSOs in Taurus, Oph, Upper Sco, etc	Young Stars in Nearby Moving Groups	Stars in Open Clusters	Various-type stars in solar neighborhood	Stars with debris disks
Age coverage	1–10 Myr	10- ~100 Myr	130 Myr	100–1000 Myr	10 Myr– ~1 Gyr
Distance	~130 pc	10 – 50 pc	~130 pc	10 – 50 pc (except RV targets)	10 – 100 pc
Obs. #	~80	~70	~40	~150	~50

focusing on solar-type (GK) but also cover higher-(BAF) & lower-mass (M) stars
 cover age range from ~1 Myr to a few Gyrs to prove planet evolution history
 planets and disks are simultaneously surveyed in YSO and debris disk categories

Individual Main Results in each category

34 refereed papers so far

Category	Target	Discovery	Reference
NS	GJ 504 b	Planet	Kuzuhara+13
NS	Kappa And b	Planet	Carson+13
NS	GJ 758 b	Planet/BD	Thalmann+13
OC	HD23514 B, HII1348 B independent dis.	BD	Yamamoto+13
NS	HAT-P-7 B, KOI- 94 B, etc.	M star	Narita+10
YSO	~30 resolved disk imaging	Disks w/ gap/ring	e.g., Hashimoto+11

<u>SEEDS Planet Discovery: GJ 504 b</u>

As a highlight, we report an exoplanet detection around the Sun-like star GJ 504. A unique cold Jovian planet imaged (Kuzuhara, Tamura et al. 2013).

□ Properties of GJ 504

- Distance: 17.6 pc
- Spectral type: G0
- Mass 1.2 M_{sun}
- Age: 160 [conservative range; +350, -60] Myr
- Metallicity [Fe/H]: 0.1–0.3 (Valdes+04, Takeda+07, Valenti & Fischer 05)
- □ 9 detections so far
- ⇒ Confirmation of common proper motion and partial orbital motion

<u>GJ 504b: a Jovin planet of ~160 My age</u>

□ Mass estimate via evolutionary model (Baraffe+03) w/gyro-age

=> 3-4 M_{Jup}

This estimated mass is among the lowest of directly imaged planets.

Mass estimate less affected by Hot vs. Cold start problem

- <u>Because the planet is older than</u> <u>100 Myr, the mass</u>

<u>estimate less depends on the</u> <u>choice of initial conditions</u> <u>(Hot vs. Cold start) in evolution</u> <u>models</u>. But also see Mordasini+14 for initial condition uncertainties.

<u>GJ 504b: not L-type but</u> <u>T-type planet</u>

Unique blue J-H color
 Coldest temperature (< 600 K) among the directly- imaged planets
 Photometry: J, H, Ks, L'-band (1-4 um) and SDI (CH4-off, -on; 1.56, 1.72 um)

Deep absorptions by CH₄ in atmosphere (like T-dwarf; Janson+2013)

Janson et al. 2013

Other Discoveries and Findings

□ SEEDS detected two planet candidates, other than GJ 504b

SEEDS published papers summarizing the 2 or 3 year planet survey results of each category (e.g., debris disk, Janson+2013; open cluster, Yamamoto+2013, Moving Group, Brandt+2014).

□ Other categories' summaries and statistics will be submitted.

□ Data reduction software paper (Brandt+2013).

<u>Major Results of Disk Sciences</u>

SEEDS has observed scattered light from disks and revealed many disk structures of less than 100AU scale that are **possible signs of planet formations.**

SEEDS have revealed gaps & rings of <100 AU scale in many disks (no details today)

Future Surveys and Future Missions

Summary

- Deep direct imaging such as SEEDS has detected a handful wide-orbit planets of the Solar system scale. More wide-orbit (>100au) planets also discovered by imaging both around stars and brown dwarfs.
- From SEEDS, 3 direct imaging discovery of planet candidates
 (GJ 504, Kappa And, GJ 758) and 2 brown dwarfs detection in Pleiades;
 - GJ 504b is a cold Jovian planet orbiting a relatively old Sun-like star and has unique atmospheric features.
- □ A few dozens of detections of circumstellar disks, and found/characterized disk structures that are possible signs of planet formations.
- □ Wide-orbit planets frequency is less than 10% from NICI survey and SEEDS preliminary results.
- Various future plans for direct imaging both from ground and space.
 Earth-like planet imaging is still challenging but could be possible with 30-m telescopes with ExAO+corona or 2-4m class space high-contrast telescopes.