

Precursor Science for WFIRST's Microlensing Program

Jennifer C. Yee Sagan Fellow

What is Unique About WFIRST/AFTA?

- Systematic planet census at "snowline distances"
- Free-floating planets to Earth-mass and below
- Accurate planet masses for representative sample (i.e., subject to mild, well-understood selection)
- Accurate distances from here to Galactic Center (for representative sample): "Galactic distribution of planets"

What is Unique About WFIRST/AFTA?

- Systematic planet census at "snowline distances"
- Free-flc
 Accurat sample selection
- Accurate distances from here to Galactic Center (for representative sample): "Galactic distribution of planets"

Mass Ratio is the Primary Observable

Observable $q = m_p / M_{star}$

Mass Ratio is the Primary Observable

Observable $q = m_p / M_{star}$

We *must* measure the mass of the lens star to measure the mass of the planet.

3 Ways WFIRST will Measure Lens Masses

- 1. Lens Flux
- 2. Microlens Parallax
- **3. Astrometric Microlensing**

Optical HST Imaging

An immediate, optical HST survey of the WFIRST fields will allow proper motion measurements for 22% of WFIRST stars → Direct verification of WFIRST microlens astrometry.

Reliable microlens astrometry measurements are vital to measuring planet masses with WFIRST.

Optical HST Imaging

Colors of stars in WFIRST field \rightarrow temperature, extinction, metallicity

WFIRST relative astrometry + GAIA absolute astrometry + HST colors → Detailed structure of the galaxy

Gould 1994 ApJL, 421, 75

Udalski et al. 2014, ApJ, submitted, arXiv: 1410.4219

AO Observations

High-resolution imaging of known microlensing events can directly measure the lens flux (and mass).

1.3m

10m

Batista et al. 2014, ApJ, 780, 54

Microlens Astrometry of Black Holes

The astrometric microlensing effect for stellar mass black holes is large enough to measure with current capabilities.

$M_{lens} \rightarrow D_{lens}$

Measured distances can be used to probe the relative frequency of planets in the bulge and the disk.

Ground-Based, Near-IR, Microlensing Survey

Ground-Based, Near-IR, Microlensing Survey

Major Observational Programs

- Directly support WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- Develop techniques for measuring (planet) masses:
 - Satellite parallax observations using Spitzer, Kepler, and TESS
 - HST or AO flux measurements of lenses in groundbased microlensing events
 - Measurements of microlens astrometry for black holes

SAG 11 Report: arXiv:1409.2759

Michael Albrow **Richard Barry** David Bennett Geoff Bryden Sun-Ju Chung Scott Gaudi Neil Gehrels Andy Gould

Matthew T. Penny **Nicholas Rattenbury** Yoon-Hyun Ryu Jan Skowron **Rachel Street** Takahiro Sumi Jennifer C. Yee