

Wide Field Infrared Survey Telescope (WFIRST)

David Spergel
Princeton Univ. (& Flatiron Institute)
Feb. 29, 2016
dns@princeton.edu

WFIRST-AFTA Will Deliver Extraordinary Science

1. Frontiers of Knowledge

- Why is the universe accelerating?
- What is the dark matter?
- What are the properties of neutrinos?

3. Understanding our Origins

- How did the universe begin?
- What were the first objects to light up the universe, and when did they do it?
- How do cosmic structures form and evolve?
- What are the connections between dark and luminous matter?
- What is the fossil record of galaxy assembly from the first stars to the present?

2. Exoplanets

- How diverse are planetary systems?
- Do habitable worlds exist around other stars, and can we identify the telltale signs of life on an exoplanet?
- How do circumstellar disks evolve and form planetary systems?

4. Exoplanets: Stars + Galaxies

- What controls the mass-energy-chemical cycles within galaxies?
- How do the lives of massive stars end?
- What are the progenitors of Type Ia supernovae and how do they explode?

Wide Field Instrument

- 0.281 deg² (28 H4RG detectors (4k x 4k pixels per detector)
- GRS Spectroscopy (135-1.89) R=461 λ
- Filter wheel enables 6 filters from 0.76 to 2 microns, a grism, and a dark [ACTIVE DISCUSSION OF OPTIMAL FILTERS: SHOULD WE GO BLUE?]

 Integral Field Unit for slit spectroscopy (0.6-2.0 microns, R~100)

Wide Field IR Telescope

WFI Observing Modes

- High Latitude Survey: Optimized to study dark energy
 - 2227 deg² area YJHF184
 - 7 σ line flux of 1.2 x 10⁻¹⁶ erg/cm²/s (R=600)
 - 26.7 AB mag YJH (4-5 dithers at each of two roll angles/174 s integration)
 - SN surveys: 27.44/8.96/5.04 deg² with depths increasing to J=29.3/H=29.4
 - LSST deep drilling fields + Subaru fields

High Latitude Survey

High Latitude Survey

Figure 2-2: The survey time per unit area per filter, including overheads, for imaging surveys. The gray squares indicate the baseline HLS survey depth. The right hand axis marked in deg² covered per filter per year of observing time. The upper axis shows the effective weak lensing source density in H-band as function of depth.

Figure 2-3: The survey time per unit area for the grism spectroscopy required to observe a certain number density of $H\alpha$ emitters at 7σ , at redshift z=1.5. The corresponding flux limit for an $r_{eff}=0.3$ arcsec source is marked on the upper axis. The gray square indicates the baseline strategy. The right axis is marked in number of deg^2 covered per year of observing time.

WFIRST-AFTA Dark Energy

Weak Lensing (2200 deg²)

- High angular resolution
- Galaxy shapes in IR
- 380 million galaxies
- Photo-z redshifts
- 4 imaging filters

Supernovae

- High quality IFU spectra
- 5 day sampling of light curves
- 2700 SNe

Redshift survey (2200 deg²)

- BAO & Redshift Space Distortions
- High number density of galaxies
- 16 million galaxies

Detailed 3D Map of Large Scale Structure at z = 1-2

Large scale structure simulation showing 0.1% of the total WFIRST-AFTA Galaxy Redshift Survey Volume

WFIRST 2,200 deg² @ 9 x 10⁻⁴ gal/Mpc³

Euclid 15,000 deg² @ 1 x 10⁻⁴ gal/Mpc³

Large scale structure simulations from 2015 SDT Report – courtesy of Ying Zu Thin and thick red circles mark clusters with masses exceeding 5 x 10^{13} $M_{\rm Sun}$ and 10^{14} $M_{\rm Sun}$, respectively

z = 1.5

WFI Observing Modes

- High Latitude Survey: Optimized to study dark energy
 - 2227 deg² area YJHF184
 - 7 σ line flux of 1.2 x 10⁻¹⁶ erg/cm²/s (R=600)
 - 26.7 AB mag YJH (4-5 dithers at each of two roll angles/174 s integration)
 - SN surveys: 27.44/8.96/5.04 deg² with depths increasing to J=29.3/H=29.4
 - LSST deep drilling fields + Subaru fields
- Bulge Survey: Optimized for exoplanet discussion
 - 6 season of 72 days
 - 10 contiguous field (2.8 degrees) each observed every 15 minutes in W149 and once every
 - 52 seconds in W149 (33000 epochs) and 290 seconds in Z087 (7000)
 - Fields are "confusion-limited"
 - Potential for high precision astrometry (50-700 mas/epoch) and seismology
 - 2.6 billion photons from a H=19.6 mag star!

WFIRST and Exoplanets

Microlensing will enable the detection of additional objects from the size of Mars to 30,000 times the mass of our Sun

WFI Observing Modes

- High Latitude Survey: Optimized to study dark energy
 - 2227 deg² area YJHF184
 - 7 σ line flux of 1.2 x 10⁻¹⁶ erg/cm²/s (R=600)
 - 26.7 AB mag YJH (4-5 dithers at each of two roll angles/174 s integration)
 - SN surveys: 27.44/8.96/5.04 deg² with depths increasing to J=29.3/H=29.4
 - LSST deep drilling fields + Subaru fields
- Bulge Survey: Optimized for exoplanet discussion
 - 6 season of 72 days
 - 10 contiguous field (2.8 degrees) each observed every 15 minutes in W149 and once every
 - 52 seconds in W149 (33000 epochs) and 290 seconds in Z087 (7000)
 - Fields are "confusion-limited"
 - Potential for high precision astrometry (50-700 mas/epoch) and seismology
 - 2.6 billion photons from a H=19.6 mag star!
- GO Observations
 - Treasury vs. Modest Programs
 - Wide vs. Deep (Galactic surveys/Real big UDF)

WFIRST-AFTA: A Unique Probe of smic Structure Formation History

Using Observations from the High-Latitude Survey and GO Programs

Going Deep

- Deep Supernovae Fields
 - Optimize overlap with LSST/HSC+PFS
 - Multi-wavelength studies
 - Target finders for JWST + ELTs
 - Early Science Fields (particularly for JWST)
- Bulge Fields
- GO Observations:
 - 25% of observing time (more in extended operations)
 - Ultradeep fields of J=30 AB!
 - Treasury versus small proposals
- Gl Programs
 - No proprietary period for imaging and spectroscopy

Figure 2-2: The survey time per unit area per filter, including overheads, for imaging surveys. The gray squares indicate the baseline HLS survey depth. The right hand axis marked in deg² covered per filter per year of observing time. The upper axis shows the effective weak lensing source density in H-band as function of depth.

Is Happening!

- Currently in Phase A (until mid-2017)
- Launch planned for mid-2020s (In-guide budget has a 2025 launch)
 - Earlier launch (2024) would lower mission cost and increase overlap with JWST
- How can you get involved?
 - Science Investigation Teams
 - Olivier Doré Weak lensing and galaxy redshift survey
 - Saul Perlmutter Supernovae
 - Ryan Foley Supernovae
 - Scott Gaudi Microlensing
 - Bruce Macintosh Coronagraphy
 - Margaret Turnbull Coronagraphy
 - Jason Kalirai GO science, Milky Way
 - James Rhoads GO science, cosmic dawn
 - Brant Robertson GO science, galaxy formation & evolution
 - Alexander Szalay GI science, archival research
 - Benjamin Williams GO science, nearby galaxies
 - Conferences
 - Think about how you will use WFIRST for your science and make sure that you and the telescope are ready!