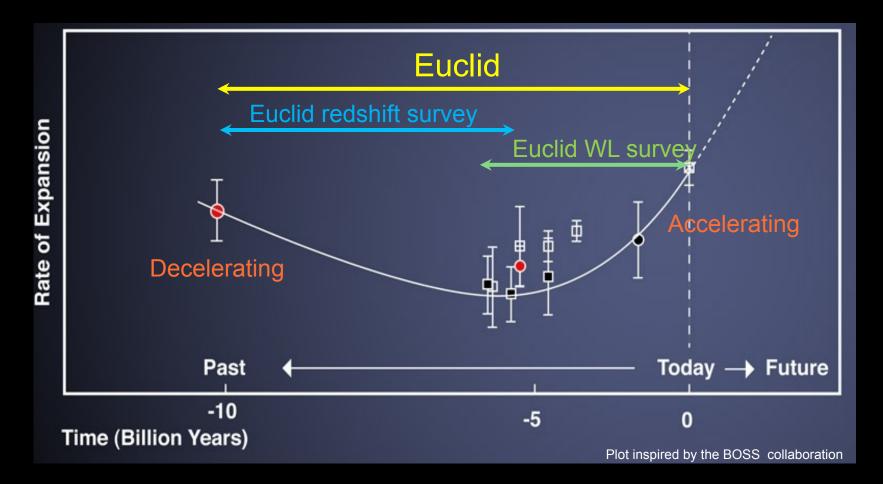


Euclid-WFIRST complementarity

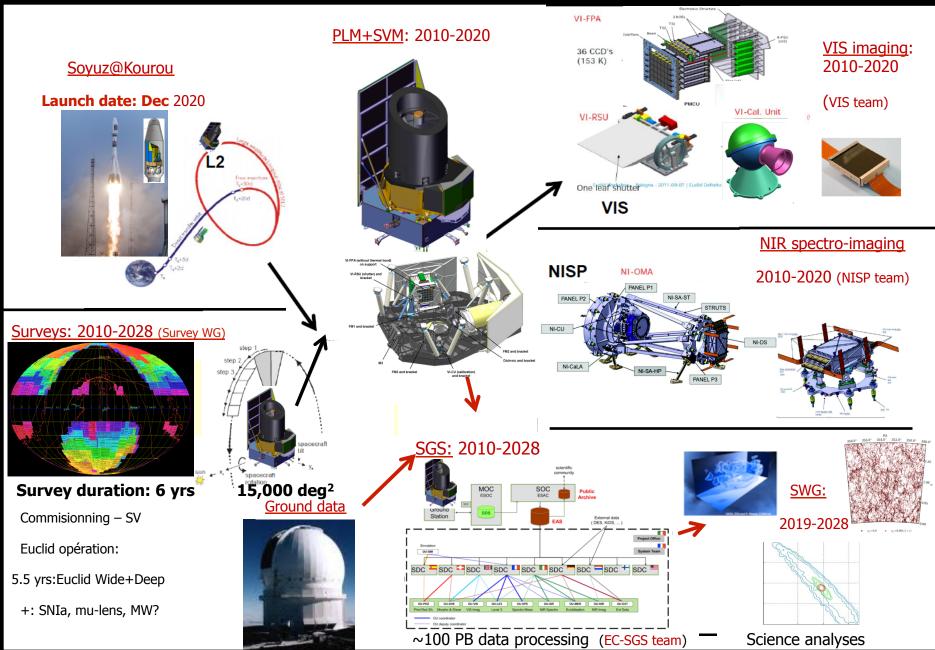
Y. Mellier & J. Rhodes

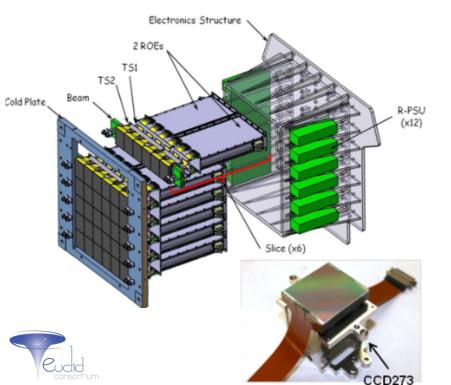
On behalf of the Euclid Consortium



Euclid Primary Objectives: the Dark Universe

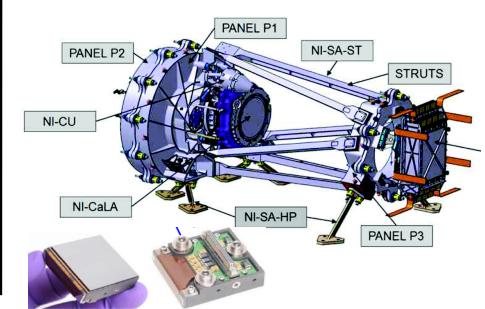
- Understand the origin of the Universe's accelerating expansion
- Probe the properties and nature of Dark Energy and Gravity,
- Probe the effects of Dark Energy, Dark Matter and Gravity by:
 - Using at least 2 independent but complementary probes (5)
 - Tracking their observational signatures on the
 - Geometry of the universe: Weak Lensing (WL), Galaxy Clustering (GC)
 - Cosmic history of structure formation: WL, Redshift-Space
 Distortion (RSD), Clusters of Galaxies (CL)
 - Controling systematics to an unprecedented level of accuracy.


Euclid will explore the dark universe and the DM-dominated / DE-dominated transition period


The ESA Euclid space mission

VIS

Courtesy: S. Pottinger, M. Cropper and the VIS team $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$


- FoV: 0.54deg²
- Mass : 133 kg
- Telemetry: < 520 Gbt/day
- 36 4kx4K E2V CCDs, 12 micron pixels
- 0.1 arcsec pixel on sky
- Limiting mag, wide survey AB : 24.5 (10 σ)
- 1 Filter: Y(R+I+Y): band pass 550-900nm

and

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters: Y, J, H
- **4 grisms**: 1B (920 1250) ,3R (1250 1850)

Euclid Legacy value

• Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3-sigma)
- 1.5 billion galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R+I+Z) AB=24.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 24.0, 5.0 σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - 0.001 acccuracy
 - Halpha galaxies within 0.7 < z <1.85
 - Flux line: 2 10⁻¹⁶ erg.cm⁻².s⁻¹ ; 3.5 σ

Euclid Legacy value

• Euclid Deep:

- 2x20 deg² at ecliptic poles
- 10 million sources (3-sigma)
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R+I+Z) AB=26.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 26.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 150000 spectroscopic redshifts of emission line galaxies with
 - 0.001 acccuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 5 10⁻¹⁷ erg.cm⁻².s⁻¹ ; 3.5 σ

Legacy value of Euclid calibration fields

 Calibration sequence over 6 years (ecliptic coordinates, Mollweide projection)→All calibration fields are shown, including HST targets and the EDFS and EDFN near the ecliptic poles. The ecliptic is shown as a vertical line, jagged lines show background level contour E(B-V)=0.08

Euclid Post-Planck Forecast for the Primary Program

Ref: Euclid RB arXiv: 1110.3193	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy			
Parameter	γ	m _v /eV	f _{NL}	w _p	W _a	FoM $= 1/(\Delta w_0 \times \Delta w_a)$	
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430	
EuclidAll (clusters,ISW)	0.009	0.020	2.0	0.013	0.048	1540	
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	6000	
Current (2009)	0.200	0.580	100	0.100	1.500	~10	
Improvement Factor	30	30	50	>10	>40	>400	

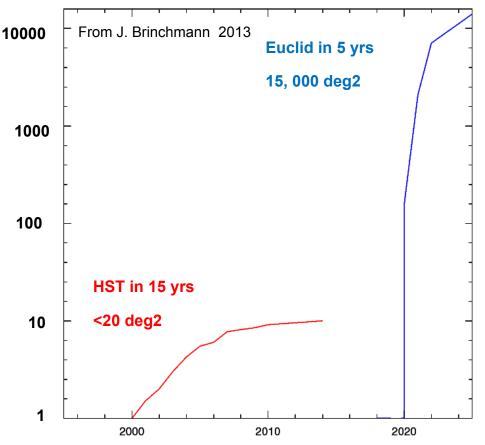
DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$

From Euclid data alone, get FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

Growth rate of structure formation: $f \sim \Omega^{\gamma}$;

Notice neutrino constraints -> minimal mass possible $\sim 0.05 \text{ eV}$

- Very large samples
 - → Diversity of populations
 - → Distribution functions
 - \rightarrow ~50,000 clusters of galaxies
- Huge volumes and numbers
 - \rightarrow Rare sources, probing the extremes
- Exquisite imaging of galaxies
 - \rightarrow Morphologies, mergers, galaxy-scale lenses
 - → Observations of 10^6 dwarf galaxies
 - Strong and Weak Lensing


•

•

- → Galaxy evolution as function of halo properties
- → Galaxy alignement
- \rightarrow 5000 clusters with giant arcs
- NIR Spectroscopy
 - \rightarrow Metals, star formation@ z>1
 - \rightarrow Cool stars
 - → Very high-z QSOs

Euclid:

contributing to the next generation wide field VIS/NIR surveys for the whole scientific community

/ Astrophysics with WFIRST, Pasadena, 29 Feb 2016

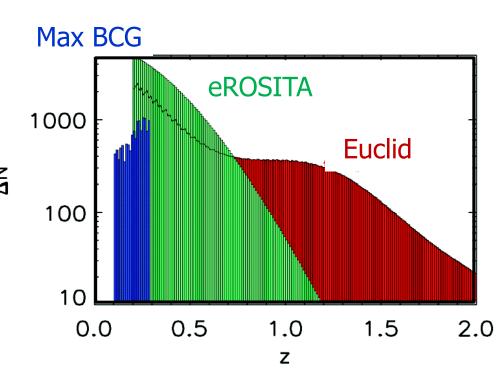
Legacy Science Working Groups

- Extra-solar planets
- Milky way and Resolved Stellar populations
- Local Universe
- Galaxies and AGN evolution
- Primeval Universe

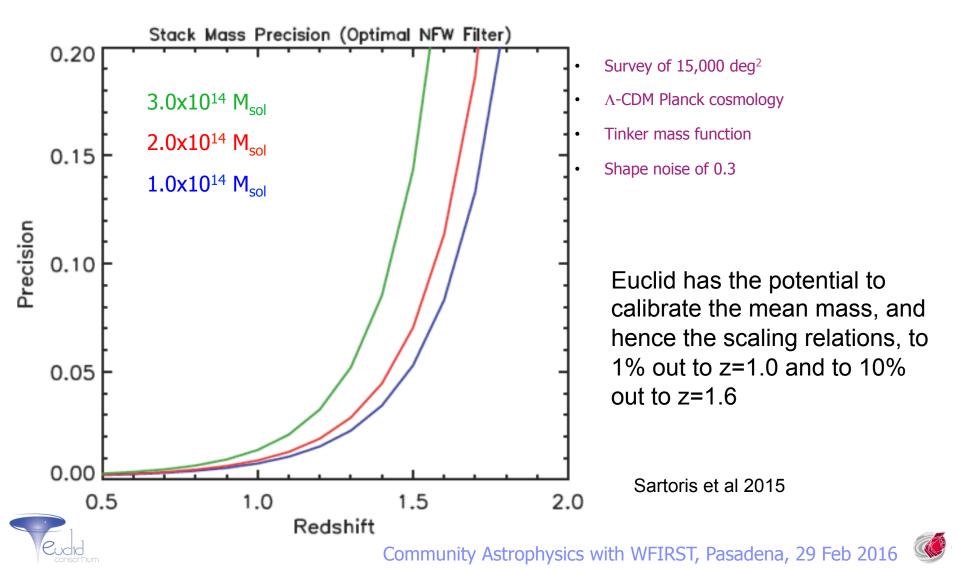
- Clusters of galaxies
- Strong lensing
- CMB Cross-correlations
- Cosmological Therory
- Cosmological simulations
- Supernovae and transients

Legacy Science Working Groups

- Extra-solar planets
- Milky way and Resolved Stellar populations
- Local Universe
- Galaxies and AGN evolution
- Primeval Universe


- Clusters of galaxies
- Strong lensing
- CMB Cross-correlations
- Cosmological Therory
- Cosmological simulations
- Supernovae and transients

Clusters of galaxies with Euclid

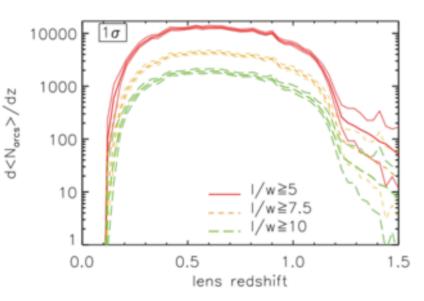

- Probe of peaks in density distribution
- Nb density of high mass, high redshift clusters very sensitive to
 - primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data will get for free:
 - Λ -CDM: all clusters with M>210¹⁴ Msol detected at 3- σ up to z=2
 - \rightarrow 60,000 clusters with 0.2<*z*<2 , Z
 - → 1.8 10⁴ at z>1.
 - ~ 5000 giant gravitational arcs
 - → very accurate masses for the whole sample of clusters (WL)
 - → dark matter density profiles on scales >100 kpc
 - Synergy with Planck and eROSITA

Scaling relations with Euclid Clusters

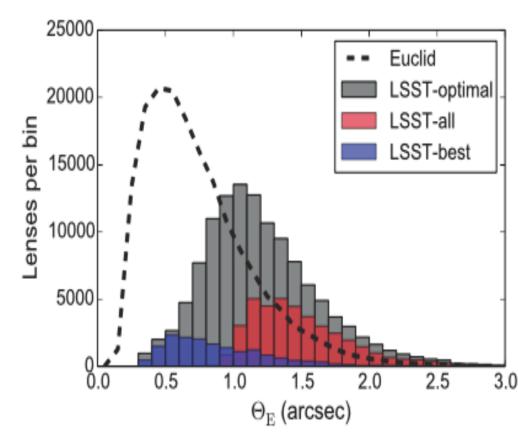
Expected precision on the mean mass of clusters with gravitational shear in bin of $\Delta log(M200)=0.2$ and $\Delta z=0.1$

Legacy Science Working Groups

- Extra-solar planets
- Milky way and Resolved Stellar populations
- Local Universe
- Galaxies and AGN evolution
- Primeval Universe


- Clusters of galaxies
- Strong lensing
- CMB Cross-correlations
- Cosmological Therory
- Cosmological simulations
- Supernovae and transients

Strong lenses seen with Euclid:


- Galaxy-galaxy lensing
- Galaxy-QSO lensing
- Gravitational arcs
- Compound lenses
- Multiple images in clusters
- Exotic lenses

Giant arcs in clusters (Boldrin et al 2015)

- 1300 arcs wit L/w >10
- 8000 arcs with L/w > 5

Strong Lensing

Galaxy-galaxy lensing (Collett 2015)

- 140,000 lenses in the wide survey
- 650 double surce plane lenses

SLACS (~2010 - HST)

cons	ortium								1 · · · · · · · · · · · · · · · · · · ·
0		\odot	1		-77		•		1
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
1	ø	1		١	-		5	1	10
SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830	SDSS J2238-0754	SDSS J1538+5817	SDSS J1134+6027	SDSS J2303+1422	SDSS J1103+5322	SDSS J1531-0105
1		0	0	في.	•	1	*• 3	۲	<u></u>
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	SDSS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	5055 J0029-0055	SDSS J1636+4707	5055 J2300+0022	SDSS J1250+0523	SDSS J0959+4416
	5055 31203+4910	5055 3114241001	5022-30940+1000	2022 01521-0508	5023-0023	5055 31636+4707	5055 32300+0022	3055 11230+0323	2022 2022 44410
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
	6	۲	0		5	C.	١		
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3216	SDSS J0216-0813	SDSS 00935-0003	SDSS J0330-0020	SDSS J1525+3327	SDSS J0903+4116	SDSS J0008-0004	SDSS J0157-0056

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

Colton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Legacy Science Working Groups

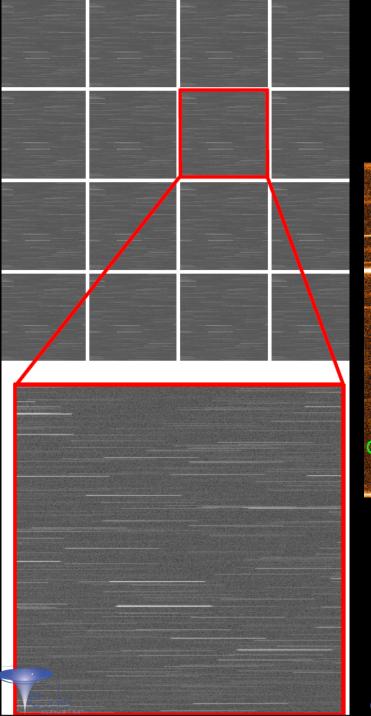
- Extra-solar planets
- Milky way and Resolved Stellar populations
- Local Universe
- Galaxies and AGN evolution
- Primeval Universe

- Clusters of galaxies
- Strong lensing
- CMB Cross-correlations
- Cosmological Therory
- Cosmological simulations
- Supernovae and transients

VIS: Simulation of M51

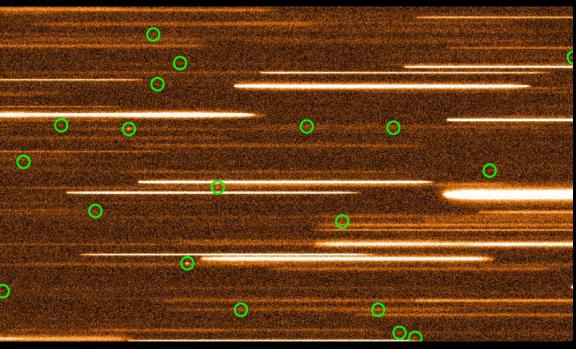
From J. Brinchmann

2.4m SDSS-like @ z=0.1


Euclid @ z=0.1

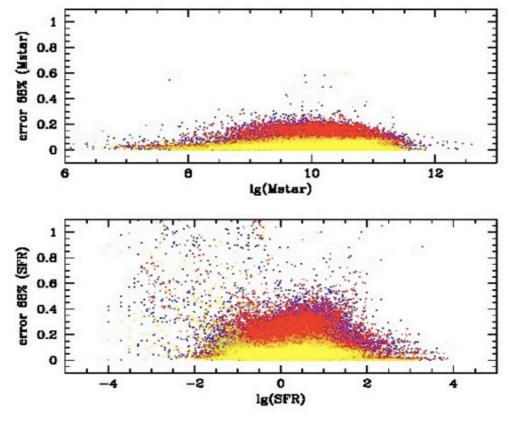
Euclid @ z=0.7

Euclid will get the resolution of SDSS but at z=1 instead of z=0.05.


Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

NISP-spectroscopy for Euclid (2015)

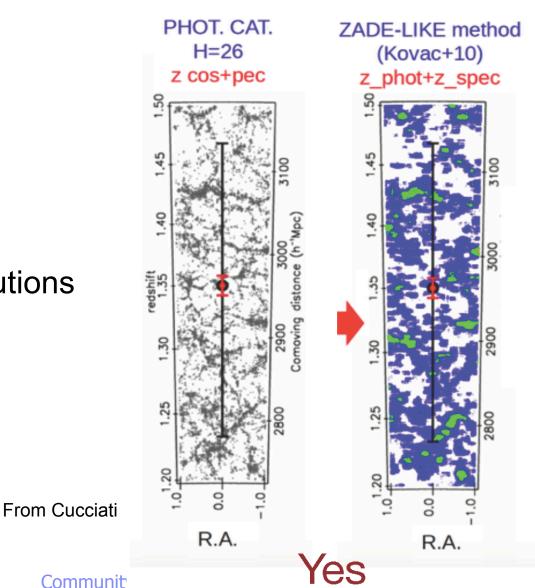
From P. Franzetti, B. Garilli, A. Ealet, N. Fourmanoit & J. zoubian

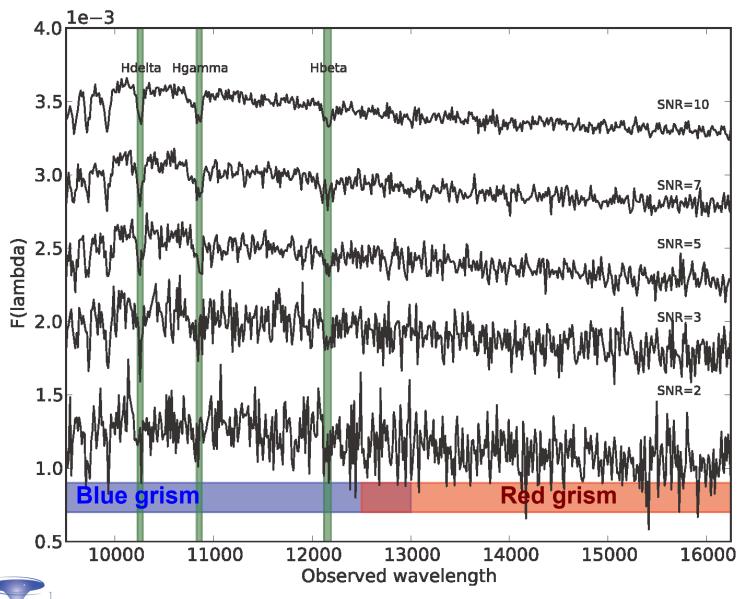

35 million spectra with at least 3 exposures taken with 3 different orientations and a total exposure time of 4000 sec.

Galaxy evolution with Euclid: physical parameters

From Pozzetti & Bolzonella

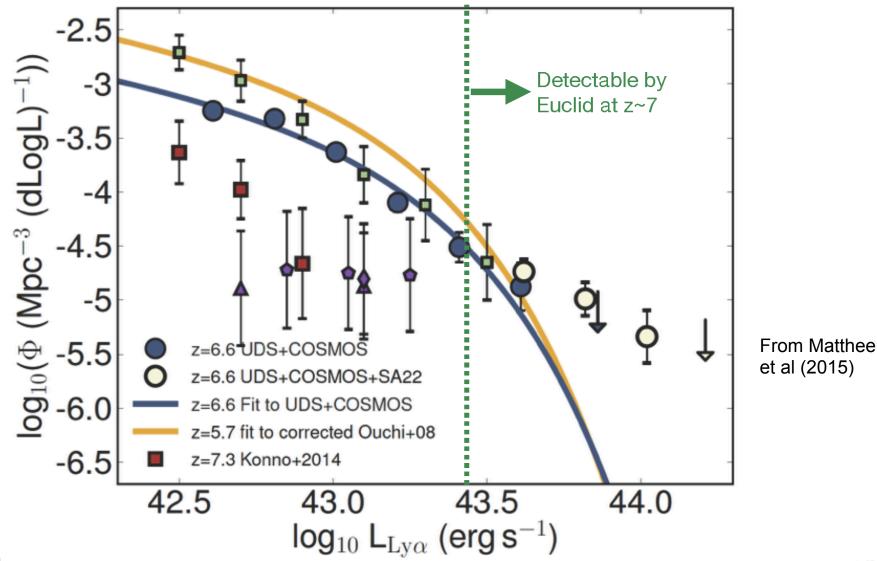
Accuracy on physical parameters from SED fits on Euclid AGNs, emission lines galaxies


 σ_{Mass} worse by 0.1-0.2 dex and σ_{SFR} worse by 0.3 dex relative to COSMOS


Galaxy evolution with Euclid: local environments

Will Euclid data have enough spatial resolutions to characterise local environments?

Measuring absorption lines on Euclid spectra



age=0.5 Gyr z=1.5

From Quai, Moresco, Cimatti, Pozetti,

Prospect for detecting high-z Ly-a emitters

Cucid

Legacy Science Working Groups

- Extra-solar planets
- Milky way and Resolved Stellar populations
- Local Universe
- Galaxies and AGN evolution
- Primeval Universe

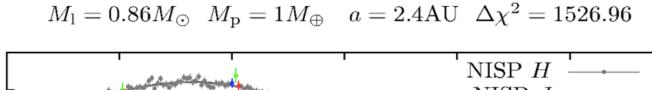
- Clusters of galaxies
- Strong lensing
- CMB Cross-correlations
- Cosmological Therory
- Cosmological simulations
- Supernovae and transients

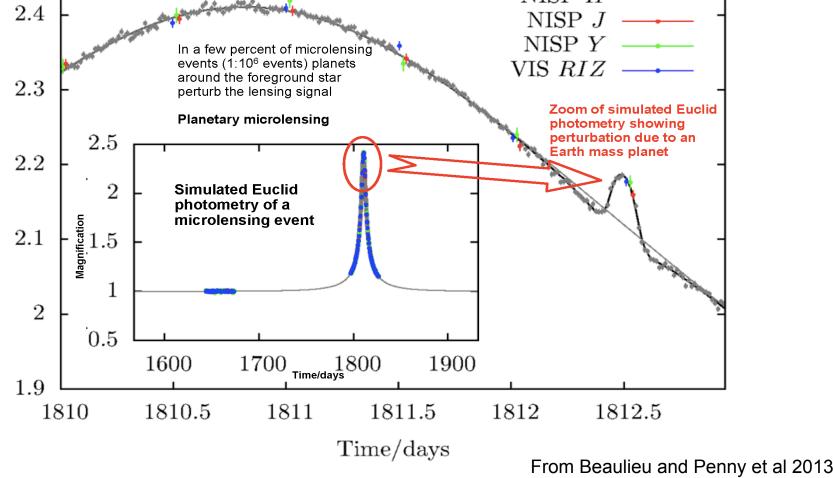
Microlensing survey?

3 fields observed every 17mn in H, every 12 hours in VIS, J and Y

- Mini-survey during commissioning (24h),
- then 4x1 months survey
- Measuring cold Earth abundance and mass function
 - 35 planets/months (5 Earth/month, 15 Neptune/month)
- Getting constraints on free-floating planets
 - 15 free floating planets/month

Euclid will complement the parameter space probed by RV and Kepler


• Measuring the cold planet mass function below 1 Earth mass


Possibility of simultaneous Euclid-WFIRST in the extended mission 2026+ : parallax between Euclid and WFIRST to measure masses of Earth mass free floaters)? \rightarrow still valid witht the new WFIRST orbit in L2?

Microlensing survey?

WFIRST and Euclid are Complementary

- Understanding dark energy will require tight control of systematics and multiple cross checks **WFIRST-AFTA**
 - Is deep, infrared over 2000 square degrees
 - Multiple shape measurements in 2-3 well–sampled bands
 - Higher resolution and source density (2.5 times as many as Euclid)
 - High quality survey of >2000 SN using a dedicated IFU
 - Redshift survey for galaxy clustering extends to z=3

Euclid

٠

٠

- Measures shapes in single optical band but with CCD detectors very well known for WL. Different systematics than WFIRST-AFTA, lower redundancy and internal cross-checks.
- Much wider (15,000 deg²) but shallower
- No SN
- Lower redshift range for galaxy clustering
- Launch in 2020, survey completed by 2026: 2500 deg^2 public in 2023, 7500 deg^2 in 2025, final 2027.

Euclid-WFIRST data processing synergy: lessons learned from Euclid (H2RG detectors, Grisms), tens of scientists and engineers involved in both surveys

The best constraints on DE and Legacy in the 2020s will come from a combination of Euclid, WFIRST and ground-based (LSST, Subaru) data