Probing Paradigms in Galaxy Evolution with WFIRST How one telescope could provide a last look on the story of star formation

Louis Abramson

UCLA Physics and Astronomy Division of Astronomy and Astrophysics

- Mike Gladders (U. Chicago)
- Alan Dressler* (Carnegie Obs.)
 - Gus Oemler (Carnegie Obs.)
- Bianca Poggianti* (INAF Padova)
- Benedetta Vulcani* (U. Melbourne)

Lots of help from:

Tommaso Treu* (UCLA) — See previous talk.

* = member of **GLASS**

How we infer star formation histories

• Popular paradigm:

single epoch scatter diagrams reveal evolutionary trajectories.

Peng+10; Brinchmann+04

How we infer star formation histories

• Popular paradigm:

single epoch scatter diagrams reveal evolutionary trajectories.

Peng+10; Brinchmann+C

How we infer star formation histories

- Take scatter plots at many epochs.
- Assume galaxies follow locus
 - Produces **a** SFH.
 - The mean SFH(Mstel)...ish.

Just add calculus (and quenching...)

- If you want a star formation history, just follow the flock.
- We know how **loci** evolve, so we think we know how galaxies evolve.
 - Provided there is some way to creates red galaxies
 - "Quenching"

The current paradigm is: "grow and quench"

Question is: \bullet

What **stops** star formation?

This has led to great successes!

But there's a catch!

• Zero passive galaxies descend from starforming galaxies at the same epoch!

Not ancestrally related!

• Zero passive galaxies descend from starforming galaxies at the same epoch!

Not ancestrally related!

Barro+15

earlier epochs.

Passive galaxies at one epoch descend from starforming galaxies at

log stellar mass

Passive galaxies at one epoch descend from starforming galaxies at earlier epochs — the SFMS need not be an evolutionary path!

log stellar mass

Rephrase the question:

What **shapes** star formation histories?

(Not: "What **stops** star formation?")

- Draw inspiration from the cosmic SFH.
 - The Madau/Lilly diagram is **lognormal**.
 - What if galaxies also had this form?

- Every galaxy in the input data gets a **lognormal SFH**.
 - No discontinuities
 - No explicit quenching
 - No physics.

- Every galaxy in the input data gets a **lognormal SFH.**
- l.e., just two numbers:

Every galaxy in the input data gets a lognormal SFH.

• l.e., just two numbers:

$$T_0, au$$

Galaxies are diversified!

Galaxies are quenched!

These are very different physical pictures.

• The <sSFR> of low mass galaxies from z = 7 to today.

• The evolution of the stellar mass function from z = 8 to today.

 \square (in

• The evolution of the stellar mass function of quenched galaxies from $z \ge 2$ to today.

• Galaxy downsizing.

 Transition from "fast-track" to "slow-track" quenching.

Ours (re)produces:

- Correlations between
 chemical enrichment
 history, bulge mass, and
 sSFR.
 - "Quenching" causality is reversed!

What sets these galactic clocks?

We don't understant star formation histories!

- We do not have a unique **descriptive** paradigm.
 - Clocks?
 - Explicit quenching?
- We don't know...
 - how individual galaxies grow in time.
 - *if* **mean trends** reveal forces differentiating individual SFHs.
 - which global phenomena best-set a galaxy's fate.
- Kelson: "We don't even know if these are knowable!"

We need different data.

JWST will reveal physics

• **PROS**:

- Deep, high resolution spectroscopy
- Covers effectively all of cosmic time

• CONS:

- Narrow FOV
 - No environmental information
 - Little context.

JWST will reveal physics

- Will provide:
 - words;
 - the rules of grammar;
 - perhaps sentences.
- Will **not** provide **narrative**.

WFIRST will reveal the story

- Must situate physics revealed by JWST for small samples in a global narrative.
- WFIRST will do that.

WFIRST will reveal the story

- Fine tomography + spatially resolved spectroscopy over huge areas will provide the narrative of galaxy evolution.
 - Will allow true progenitor
 connections via, e.g., metallicity
 gradients.
 - Will test environmental implications of above paradigms.

How WFIRST will finish the story

- Trick: isolate progenitors
 - Gradients
 - Tomography
- Test paradigms
 - Environmental trends?
 - Reionization sources?

How WFIRST will finish the story

- Trick: isolate progenitors
 - Gradients
 - Tomography
- Test paradigms
 - Environmental trends?
 - Reionization sources?

How WFIRST will finish the story

- Trick: isolate progenitors
 - Gradients
 - Tomography
- Test paradigms
 - Environmental trends?
 - Reionization sources?

We can do this! HST proves it!

- "Technology demonstration" is underway.
 - Being led across town by T. Treu and M. Malkan
 - And up the street by A. Dressler.

Grism Lens-Amplified Survey from Space

Paving the way

- GLASS is showing WFIRST grism will enable spatially resolved spectroscopy
 - Hα maps @ z ≤ 1.9
 for individual
 objects

Gas-phase metallicity gradients

- Multiple strong lines for:
 - gas-phase metallicity gradients & dust maps
 - Balmer decrements for **dust** corrections
 - Necessary for good SFRs!

Continuum thumbnail MACS1149.6+2223 PA032 G102 ID03746 MACS1149.6+2223 PA032 G102 ID03746 O(1) O(1)

Wang ΓC ' orep)

Stellar metallicity gradients

- Absorption line gradients
 - Can connect gas-phase metallicity gradients @ high-z to **stars** at low-z.
 - Very powerful evolutionary tests!

GLASS PRELIMINARY

NNER reg.	
t 0	
rel.	
req.	
NNER	
to I	
_*	

WFIRST will reveal the story

- Fine tomography + spatially resolved spectroscopy over huge areas will provide the narrative of galaxy evolution.
 - Will allow true progenitor
 connections via, e.g., metallicity
 gradients.
 - Will **set** the paradigms.

