

Optimizing WFIRST Coronagraph Science

Laurent Pueyo For Macintosh (PI) WFIRST SIT Team 03-01-16

47 Uma - 61 Uma

The Potential of the WFIRST CGI

 $\log_{10}(F_P/F_S)$

Team Structure

Team Structure

Collaborators:

- Rafael Millan-Gabet
- Christian Marois
- Andrew Howard
- Leslie Rogers
- Michael Line
- Natalie Batalha
- Jonathan Fortney
- Amy Simon

- Colin Goldblatt
- Rebekah Dawson
- Gaspard Duchene
- Remi Soummer
- Tyler Robinson
- Caroline Morley

Simulations

- Lead: Bruce Macintosh
 Co-Is
- Jeremy Kasdin
- Dmitry Savransky
- John Trauger
- Mike McElwain

Full-physics simulation flow

Key Simulation tasks

- Develop faster simulation approaches
- Develop open framework to merge astrophysics from other groups.
- Support Turnbull SIT

We will provide a public release of our simulations framework that can be used to evaluate GO/GI science opportunities.

Science modeling

- Lead: Nikole Lewis
 Co-ls:
- Mark Marley
- Roxana Lupu
- Adam Burrows
- Renyu Hu
- John Debes
- Tom Greene
- Marshall Perrin

Collaborators

- Rafael Millan-Gabet
- Michael Line
- Natalie Batalha
- Jonathan Fortney
- Amy Simon
- Colin Goldblatt
- Rebekah Dawson
- Gaspard Duchene
- Tyler Robinson
- Caroline Morley

WFIRSTaccessible known RV planets span a range of properties

Step 1: Albedo spectra generation with full-physics models

Planet models

- Full-physics planet models to generate input spectra
- Planets properties will be extremely diverse and different than our solar system
- Parameters including metallicity, clouds, chemistry
- Previous work produces many models; we will organize and curate

Step 2: Propagate through CGI models (analytic or full)

Step 3: Use MCMC inversion to recover parameters

Circumstellar dust 47 UMa + 30 Zodi disk

Disk is detected at low SNR in multiple resolution elements, Planets b (2.1 AU) and c (3.6 AU) are easily seen

PSF-subtracted image

Binned SNR map of disk (peak SNR=15)

SDT report, Schneider & Greene

Disk (Debes et al) flowing through simulation and data pipeline

Simulated astrophysical scene

Recovered astrophysical scene

Model a range of disks (mature zodiacal disks, young debris disks, transitional disks...). Collaboration with Turnbull SIT We will also use MCMC inversion to retrieve the disk parameters.

Key Science Modeling tasks

- Plan to collate library of theoretical planet and disk spectra/models that will be made available online and identify critical areas on which to focus our modeling efforts (e.g. mini neptunes and super earths)
- Evaluate importance of polarization measurements for planets and disks
- Model orbit-fitting

Instrument operations, requirements

- Lead: Kerri Cahoy
 Co-ls:
- Jeremy Kasdin
- Tom Greene
- John Trauger
- Mike McElwain
- Tyler Groff
- Laurent Pueyo
- Marshall Perrin

Development of operating scenarios

- Observing scenarios involve three stars per target
- Wavefront reference star (bright)
- Science target
- PSF reference star (matching science target)
- Are all three necessary? How close to a match does it need to be?

Wavefront control convergence

Need to include wavefront control overheads in DRMs. Should wavefront control continue during science?

Can science images generated in wavefront control distinguish speckles and planets?

Key instrument tasks

- Work to push wavefront control algorithms within ExEP / WFIRST
- Co-organize "Stanford meetings" with instrument team
- Setting level 2 requirements
 - Define spatial and spectral sampling
 - Current design overampled spatially and undersampled spectrally
 - Explore dark current vs readnoise
 - Maximize throughput
- Explore polarimetry modes
 - Polarization-dependent aberrations in beam
 - DM can only correct one polarization state for some modes
 - How to split, modulate polarization
 - Scientific value?

DRM and exoplanet strategy

- Lead: Dmitry Savransky
 Co-Is
- Nikole Lewis
- Bruce Macintosh
- Collaborators
- Leslie Rogers
- Andrew Howard
- Natalie Batalha
- Rafael Millan-Gabet

Planets within 30 pc

Kepler-consistent RF; 1.9 pl/star Main sequence non binary stars

WFIRST sensitivity space

WFIRST sensitivity space

Exoplanet Yield Estimates

	Giants (4-15 R _E)	Sub- Neptunes (2-4 R _E)	Super-Earths (1-2 R _E)	Total
Known RV Studies*	16	0	0	16
180-day Blind Search	2	6	4	12
Total**	18	6	4	28

- RV yield could be augmented by the WIYN program for future RV observations; see poster by Chontos et al
- ** Yield assumes 0.4 jitter and 30x speckle attenuation

DRM optimization

- Add to models
 - Target ID by GAIA, WIYN precision RV
 - RV planet recovery and full characterization
 - Blind search optimization including recovery and orbits
 - Extrasolar zodiacal dust models with varying properties and higher fidelity

Long term: evaluate a range of possible planet populations:

- Model multiplanet correlations,
- Bimodal planet formation (Kepler-blind solar analogs)

- Lead: Laurent Pueyo
 Co-Is
- Laurent Pueyo
- John Debes
- Mike McElwain
- Marshall Perrin
- Collaborators
- Remi Soummer
- Christian Marois

PSF subtraction and image processing

Karhunen-Loève Image Processing (Soummer et al 2012)

Slide by M. Ygouf

PSF subtraction and data processing

 Ongoing STScI project uses standard algorithms (KL mode / PCA base) against project data.

HBLC OS3 distribution

(a) Without LOWFC

(b) With LOWFC

- Optimal estimation of recovered planet properties
 - Algorithmic self-subtraction biases
- Properly asses probabilities (false positive and missedplanet) for blind surveys

Team Structure

Long-term tasks that will enable GO/GI science

- Iterative cycles of simulated high-fidelity data
 - This will include public data releases
- Refined science models
 - Improved disk models with consistency with planet models, observations
 - Mini-Neptune and Super-Earth atmospheric models
 - Public releases of models developed in support of SIT effort
- DRM cycles
 - Public release of yield analysis code via github
- GO coronagraph science collaboration
 - Exoplanet topics young planets and planet-forming disks, selfluminous planets
 - Non-exoplanet science