### **WFIRST and Solar System Science**

David E. Trilling Northern Arizona University

### Intro to the Solar System

The formation and evolution of the Solar System can be learned from studying the properties of millions of small bodies







Sun

Earth's orbit



Sun



# Earth's orbit





Earth's orbit







### At this scale the nearest star is at LAX

Kuiper Belt Objects

Plot prepared by the Minor Planet Center (2014 Aug.31).

Pluto

### Solar System objects move

HST/ WFPC2 Evans et al. 1998

- Rates of motion: From 1—100"/hour
- Impacts both GI and GO science (if there is no non-sidereal observing; more on this later)



### **Science investigations**

• Archive: only WFI data is going to be useful

If NO repeat:

- Only trailed objects (trails up to 30-50 pixels)
- Statistical population properties (how many, how bright) as derived from trails
- Lessons learned from Pan-STARRS (example: Near Earth Asteroid lightcurves measured in the trail)

- If YES repeat:
  - Slow moving outer Solar System objects (connect the dots)
  - Individual object properties

# 1 arcmin x 1 arcmin



# 1 arcmin x 1 arcmin



### Andy Gould (2014):

- KBO orbits
- Binary KBOs
- Occultations

### **Guest Observer science**

### **Guest Observer science**

• Without non-sidereal observing, only WFI will be useful

- Near Earth Asteroids (10 sec exposures)
- Main Belt Asteroids (30 sec exposures)
- Kuiper Belt Objects (270 sec exposures)



Near Earth Asteroids: UKIRT Mommert et al.



Main Belt Asteroids: 2MASS Sykes et al.





Hainaut et al.

Opens a whole new world for dedicated studies

- Opens a whole new world for dedicated studies
- WFI:
  - Characterization of (very) faint objects through long integrations
  - Every known Kuiper Belt Object
  - Almost every known Near Earth Asteroid

- Opens a whole new world for dedicated studies
- IFU:
  - Spectra of (very small) Near Earth Asteroids
  - Separate spectra of binary components
  - Ice compositions in the outer Solar System

- Opens a whole new world for dedicated studies
- Coronagraphy:
  - Satellites of Kuiper Belt Objects
  - Active asteroids



- Opens a whole new world for dedicated studies
- Could say much more, but trying to stay "high level"

### **Planet Nine**

### **Planet Nine**

### Recently predicted Neptune-sized object at ~500 AU



# **Planet Nine**

- WFI: Search for Planet Nine
- WFI/IFU: Characterize atmosphere
- Cor.: Search for moons, rings, ....

### **Other assets**

### **Other assets**

- JWST: Highly complementary
- LSST asteroids in WFIRST FOV will be strongly detected (and further characterized)
- NEOCam (proposed Discovery mission): Add NIR characterization to thermal IR discovery (but overlap might be small because of orbits)

### Conclusions

# Conclusions

- Use WFIRST to study small Solar System bodies
- WFI/GI: KBOs, also Near Earth Asteroids
- WFI/GO: KBOs, asteroid characterization
- If non-sidereal observing is possible
- Many additional projects (WFI, Cor.)

### Other assets

 Highly complementary to LSST, JWST; less so for NEOCam