WFIRST can do it too:

On the discovery of transiting planets and binary stars with WFIRST

Avi Shporer
Sagan Fellow, JPL
Eclipse/transit survey 101:
Eclipse/transit survey 101:

- Many **epochs**:
 System is out-of-eclipse most of the time
Eclipse/transit survey 101:

- Many **epochs**: System is out-of-eclipse most of the time

- Many **stars**: Most binary systems will not show eclipses
WFIRST as an eclipse survey:
WFIRST as an eclipse survey:

Epochs:
6 seasons x 72 days/season x 96 epochs/day - lunar passage = ~33,000
WFIRST as an eclipse survey:

Epochs:
6 seasons x 72 days/season x 96 epochs/day - lunar passage = \(~33,000\)

Stars
WFIRST as an eclipse survey:

Epochs:
6 seasons x 72 days/season x 96 epochs/day - lunar passage = \(\sim 33,000 \)

Stars
- \(\leq 1\%: \) 50 M
- \(\leq 0.1\%: \) 1 M
WFIRST as an eclipse survey:

Epochs:
6 seasons \(\times \) 72 days/season \(\times \) 96 epochs/day - lunar passage = \(~33,000\)

Stars
- \(\leq 1\%: \ 50 \ M \)
- \(\leq 0.1\%: \ 1 \ M \)

Precision:
- \(\sigma(H) \approx 10^{(2/15)(H-15)} \) ppt
- \(\sigma(H=15) \approx 0.1\% \)
- \(\sigma(H=21) \approx 1\% \)
WFIRST as an eclipse survey:

Opportunity!!!

Epochs:
6 seasons x 72 days/season x 96 epochs/day - lunar passage = \(~33,000\)

Stars
\[\leq 1\%: \textcolor{blue}{50 M} \]
\[\leq 0.1\%: 1 \text{ M} \]

Precision:
\[\sigma(H) \approx 10^{(2/15)(H-15)} \text{ ppt} \]
\[\sigma(H=15) \approx 0.1\% \]
\[\sigma(H=21) \approx 1\% \]
WFIRST as an eclipse survey:

Opportunity!!!

Noise = 1 %
WFIRST as an eclipse survey:

Opportunity!!!

Noise = 1 %
WFIRST as an eclipse survey:

Opportunity!!!

Noise = 1 %
WFIRST as an eclipse survey:

Opportunity!!!

Noise = 1 %
Warning: All numbers are rough estimates
Warning: All numbers are rough estimates
Warning: All numbers are rough estimates.
Transiting planets with WFIRST
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars \Rightarrow more distant host stars
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars \Rightarrow more distant host stars
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars \iff more distant host stars

273 Known transiting planets with measured distance (NASA Exoplanet Archive)
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars \Rightarrow more distant host stars

273 Known transiting planets with measured distance (NASA Exoplanet Archive)
Transiting planets with WFIRST

Why do we need more (hot Jupiter) planets?
Fainter host stars \iff more distant host stars
\implies Planets orbiting a different stellar population

273 Known transiting planets with measured distance (NASA Exoplanet Archive)
Transiting planets with WFIRST

Planets orbiting a different stellar population
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
Transiting planets with WFIRST

Planets orbiting a different stellar population
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
Beyond the solar neighborhood
- Galactic disk

Transiting planets with WFIRST

Planets orbiting a different stellar population
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

• M-dwarfs
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs

\[
\text{Depth} = \left(\frac{R_{\text{Jupiter}}}{R_{\text{G}_2}} \right)^2 = 1 \%
\]
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs

Depth = \left(\frac{R_{\text{Jupiter}}}{R_{\text{M}2}} \right)^2 = 4 \%
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs

Depth = \left(\frac{R_{\text{Jupiter}}}{R_{\text{M2}}} \right)^2 = 4 \%
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs

Depth = \left(\frac{R_{Jupiter}}{R_{M2}} \right)^2 = 4 \%
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5

\[
\text{Depth} = \left(\frac{R_{\text{Jupiter}}}{R_{\text{M2}}} \right)^2 = 4 \%
\]
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

• M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting

Depth = $\left(\frac{R_{\text{Jupiter}}}{R_{\text{M2}}} \right)^2 = 4 \%$
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

• M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting

• White dwarfs
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

• M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting

• White dwarfs
 - short periods, short eclipses
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting

- White dwarfs
 - short periods, short eclipses
 - All EBs are interesting
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Beyond the solar neighborhood
 - Galactic disk
 - Galactic bulge

- M-dwarfs
 - M4: V-H = 5.0, G4: V-H = 1.5
 - All EBs are interesting

- White dwarfs
 - short periods, short eclipses
 - All EBs are interesting
Transiting planets with WFIRST

Planets orbiting a different stellar population
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

• Planet occurrence:
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

• Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

• Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

169 planets
$P < 10 \, \text{d}$
$R_P > 0.5 \, R_J$

Hot Jupiter host metalicity (NASA Exoplanet Archive)
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
 - Transit *and* microlensing occurrence with same instrument.
Transiting planets with WFIRST

Planets orbiting a different stellar population

• Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter-host metallicity correlation.
 - Transit and microlensing occurrence with same instrument.

Science cases:
WFIRST SDT Report (Spergel+2015)
Transiting planets with WFIRST

Planets orbiting a different stellar population

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter - host metalicity correlation.
 - Transit and microlensing occurrence with same instrument.

Science cases:

WFIRST SDT Report (Spergel+2015)
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
 - Transit and microlensing occurrence with same instrument.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metalicity correlation.
 - Transit \textit{and} microlensing occurrence with same instrument.

- M-dwarfs:
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
 - Transit and microlensing occurrence with same instrument.

- M-dwarfs:
 - Hot Jupiter “desert”.

radius-flux correlation (and radius-a_tide/a_grav correlation).
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- M-dwarfs: - Hot Jupiter “desert.”
- Planet occurrence: - Hot Jupiter occurrence beyond the solar neighborhood. - Hot Jupiter - host metalicity correlation.
- Transit and microlensing occurrence with same instrument.
Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- Planet occurrence:
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metallicity correlation.
 - Transit *and* microlensing occurrence with same instrument.

- M-dwarfs:
 - Hot Jupiter “desert”.

Transiting planets with WFIRST

Planets orbiting a different stellar population

Science cases:

- **Planet occurrence:**
 - Hot Jupiter occurrence beyond the solar neighborhood.
 - Hot Jupiter – host metalicity correlation.
 - Transit *and* microlensing occurrence with same instrument.

- **M-dwarfs:**
 - Hot Jupiter “desert”.

- **White dwarfs:**
 - Planetary systems future fate.
Transiting planets with WFIRST

Planets orbiting a different stellar population
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- Blending:
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- **Blending:**
 - Pixel centroid analysis.
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- Blending:
 - Pixel centroid analysis.

Batalha+10 (see also: Bryson+13)
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- Blending:
 - Pixel centroid analysis.
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- **Blending:**
 - Pixel centroid analysis.

- **Eclipsing binary stars as false positives:**
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- **Blending:**
 - Pixel centroid analysis.

- **Eclipsing binary stars as false positives:**
 - Color dependent depth variation \((W, Z)\).
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- Blending:
 - Pixel centroid analysis.
- Eclipsing binary stars as false positives:
 - Color dependent depth variation (W, Z).
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- Blending: Pixel centroid analysis.
- Eclipsing binary stars as false positives: Color dependent depth variation (W, Z).
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- **Blending:**
 - Pixel centroid analysis.

- **Eclipsing binary stars as false positives:**
 - Color dependent depth variation (W, Z).
 - Secondary eclipse deeper in NIR.
Transiting planets with WFIRST

Planets orbiting a different stellar population

The challenges (partial list):

- **Blending:**
 - Pixel centroid analysis.

- **Eclipsing binary stars as false positives:**
 - Color dependent depth variation (W, Z).
 - Secondary eclipse deeper in NIR.

- **Photometric stability between exposures.**
WFIRST can do it too:

Transiting planets with WFIRST

Planets orbiting a different stellar population

Resources:
WFIRST-AFTA SDT Report
Gould+2015, JKAS, 48, 93
LSST Science Book 2009
https://wfirst.ipac.caltech.edu

WFIRST meeting, Pasadena, March 1, 2016