# **Resolving the Milky Way with WFIRST**

Jason Kalirai (JHU, STScl) SIT Members: C. Conroy (CfA), A. Dressler (OCIW), M. Geha (Yale), E. Levesque (UW), J. Lu (IfA), J. Tumlinson (JHU, STScl)



## A View of Galaxies in the Universe

### Timescale of Stellar Evolution

### The Initial Mass Function of Stars

### Timing of Mass Loss and Feedback

### The Color-Magnitude Relation

### Archaeology of Galaxies

Star Formation





## A View of Stellar Populations



# Three Components to Our Milky Way Program

The Milky Way's Cospatial Pops (Star Clusters & Galactic Center)

**IRST Advantages Overcomes crowding Yields precise photometry Yields precise astrometry Reveals lowest mass tracers** 





The Milky Way Halo (Substructure and Dwarf Galaxies)

The Milky Way's Exotic Populations (Massive Stars & Star Formation)

WFIRST Advantages Maps wide fields Separates faint stars from galaxies **Detects cool stars** 

**IRST** Advantages **Penetrates extincted regions Reaches large distances Resolves dense environments** 





## The Importance of High-Precision Photometry





Milone et al. (2015) Piotto et al. (2015)







## Milky Way Populations: From Visible to the Infrared

### Science Opportunities

1.) STRETCH the CMD to measure more accurate fundamental properties 2.) Measure and calibrate the IR color-magnitude and mass-luminosity relations 3.) Establish (cosmologically interesting) sub-Gyr ages for Milky Way populations 4.) Leverage GAIA to map general Milky Way sight lines into co-spatial populations



What WFIRST Brings to the Table 1.) Superb sensitivity at near-IR wavelengths 2.) High resolution imaging 3.) Wide field of view



### Measuring and Applying the IR Color Magnitude Relation

**Cospatial Populations in the Milky Way** 

★ 10,000s integrations with WFIRST will measure M dwarfs out to the edge of the Milky Way ★ Modeling stellar populations on this IR plane will yield sub-Gyr ages \* Best constraints to date on when baryonic structure formation began in the Universe ★ The IMF down to below the H burning limit, and its variation with environment **★** Broad applications from the first calibration of the color-magnitude relation in the IR **★** Add new insights on early cluster formation and bring new IR diagnostics to multiple population scenarios







GAIA

### WFIRST Stellar Models MIST - MESA Isochrones and Stellar Tracks (Choi et al. 2016)

- ★ Stellar evolution models computed using MESA (Paxton et al. 2011; 2013; 2015)
- ★ Open source software
- **★** Continuous evolution through challenging phases (e.g., He core flash)
- $\star$  Parallelization = possible to produce large grids of models
- \* Self consistent modeling of the stellar main sequence, post main sequence, and white dwarf cooling sequence \* Will run specific models (e.g., non solar abundances or specific abundance patterns) in house for the FSWG



### **MIST Model Grid** -4.0 < [Fe/H] < 0.5

 $5.0 < \log(Age) < 10.3$ 0.1 < M [M<sub>☉</sub>] < 300 Pre-MS to advanced phases (e.g., WD & end of C-burn) **Stellar rotation** 





Isochrones

**Evolutionary Tracks** 

3.5

## Wide Field Maps of the Milky Way Halo

### Substructure and Dwarf Galaxies

\* Dramatically increase the contrast of Milky Way streams and UFDs enabling detection through the halo - SDSS Field of Streams detects the faintest substructure to merely 1% of the MW Volume - WFIRST HLS will enable structure detection throughout the full volume of the 2000 sq deg **★** WFIRST is also the ideal tool to characterize the star formation histories of this pristine material





## **Optimal Detection and Characterization of Substructure**

Substructure and Dwarf Galaxies

\* Will build, test, and optimize algorithms for finding tidal debris and new faint dwarf galaxies in the HLS (to date, all known stellar streams have been discovered via by-eye searches of stellar density maps) **★** Will develop new algorithms using a new suite of hydrodynamical simulations of stellar halos \* Will explore the use of the IR 'kink" as a new standard candle to detect substructure and measure metallicities \* Will explore combined use of deep photometry and the grism to constrain age, metallicity, and IMF of substructure





## Star Formation and Massive Stars

### WFIRST WFI Milky Way Opportunities

**★** High resolution, wide field surveys of interesting sight lines in the Galactic plane are non existent \* WFIRST can enable a complete census of the evolved massive star population in the Galactic disk

- - constrain models of post main-sequence evolution and feedback
  - measure star formation rates and early evolution of star clusters
  - explore binarity in massive stars
- ★ Will develop multi-band IR diagnostics for all classes of massive stars

### WFIRST CGI Milky Way Opportunities

- ★ CGI can directly image the environments of massive stars ★ Mass loss mechanisms and rates
- **★** Feedback and stellar evolution timescales
- **★** Compare circumstellar morphologies and supernovae remnants to probe eruption and supernova kinematics
- **Models of circumstellar environment morphologies for** different evolutionary stages and mass loss prescriptions





## The Current WFIRST Filters



## Advantages of Pushing WFIRST Bluer



★ m<sub>700</sub> increases age resolution by 50%

Synergistic Studies with Other SITs WFIRST WFI Milky Way Opportunities ★ Interfacing with other UVOIR missions in the 2020s (our team has strong representation on JWST, TMT, GMT, Keck, LSST, NASA APS)

- **★** Simulating wide field astrometric capabilities for Galactic dynamics & structure (working w/ D. Spergel)
- ★ Going from stellar isochrones to WFIRST pop synthesis models for galaxy studies (working w/ GO extragalactic teams)
- (working w/ S. Gaudi and the microlensing team)
- Coronagraphy applications for non exoplanet and debris disk sources (working w/ M. Turnbull, B. Macintosh and the coronagraphy teams)
- \* Algorithms to detect and interpret Milky Way halo substructure (strong synergies with the WINGS program)

- Masses of faintest MW satellites, mass of the MW halo, testing cold vs warm DM

\* Applying IR phot and spec diagnostics to stellar populations in the bulge (GI program)



# **Resolving the Milky Way with WFIRST**

Jason Kalirai (JHU, STScl) SIT Members: C. Conroy (CfA), A. Dressler (OCIW), M. Geha (Yale), E. Levesque (UW), J. Lu (IfA), J. Tumlinson (JHU, STScl)

