WFIRST Infrared Nearby Galaxy Survey

Ben Williams (University of Washington)

WFIRST

tubb

Williams: WFIRST Infrared Nearby Galaxy Survey

IPAC .

OPHYSICS

ARCH 2. 2016 IN PASA

Nearby Galaxies Are Great for Astrophysics

- Detailed view and context simultaneously
- Sensitive to galaxy evolution and cosmology
- Anchor our knowledge for interpretation of more distant universe
- Large samples Subdivide sample for specific goals
- Cover a wide range of galaxy properties

Huge Potential Data Set

Projects and Lead Co-ls

PI: Williams (U. Wash.) Deputy PI: Dalcanton (U. Wash.)

Photometry	Dolphin (Raytheon)
Stellar Halos	Bell (Mich.), Johnston (Columbia), Bullock (Irvine)
Dwarf Satellites	Sand (TTU), Bullock (Irvine)
Small Scale Dark Matter	Walker (CMU), Johnston (Columbia)
Globular Clusters	Seth (Utah)
Star Formation Histories	Weisz (Berkeley)
Dust & ISM	Gordon (STScI), Dalcanton (UW)
Stellar Evolution	Boyer (Maryland)

Collaborators

Raja Guhathakurta (UCSC) Denija Crnojevic (TTU) Marina Rejkuba (ESO) Antonela Monachesi (MPA) Alan McConnachie (HIA) Laura Sales (UCR) Karin Sandstrom (UCSD) Julia Roman-Duval (STScI) Alberto Bolatto (Maryland) Josh Peek (STScI) Jay Anderson (STScI) **David Hendel (Columbia)**

Beth Willman (LSST) Phil Rosenfield (CfA) Margaret Meixner (STScI) Leo Girardi (Padova) Nicolas Martin (MPIA) Cliff Johnson (UCSD) Jay Strader (MSU) Robyn Sanderson (Columbia) Adrian Price-Whelan (Columbia) Sergey Koposov (Cambridge) Julio Chaname (Catolica) Jorge Penarrubia (Edinburgh) Coral Rose Wheeler (UCI)

Stellar Halos

Details from HST

[Fe/H]

Ibata et al. 2014

Cen-A - Megacam

WFIRST should reach <1 star/arcmin²

Williams: WFIRST Infrared Nearby Galaxy Survey

Crnojevic et al. 2015

For HST, Even relatively far away coverage is sparse

WFIRST gets full coverage

WFIRST gets full coverage

WFIRST gets full coverage

Stellar Halo Structures

Number, luminosity, shape of streams — Types, timing and orbits of galaxies accreted. Disrupted streams — Small-scale dark matter halos.

Dwarf Satellites

Lots of dark, sub-galactic halo satellites predicted See Poster

Wide Binaries

Dark sub-halos disrupt wide binary systems. Their would put stress on Lambda-CDM.

Penarrubia et al. 2010

0.1% in bound subhalos

1% in bound subhalos

10% in bound subhalos

100% in bound subhalos

Faint -- Nearby Galaxies Avoid non-DM perturbs -- Old Dwarfs Allow disruption time -- Old Dwarfs ~0.05" separation -- High resolution Changes across galaxy -- Wide FoV

Globular Clusters

Virgo intracluster globulars (Williams et al. 2007)

- Old: Probe early epochs of galaxy assembly and halo formation
- WFIRST partially resolves >90% of GCs in galaxies <10 Mpc
- Individual RGB stars can give information on metallicity
- Spectroscopy Targets

Stellar Populations

Huge increase in sampling of short-lived, high-luminosity phases

Star Formation Histories

Weisz et al. 2011

Star Formation Histories

Wide Field Coverage ProbesLarge Sample Probes TrendsLowest masses sensitive toTrends with Radiuswith Galaxy Mass.reionization.

Dust and Population Maps

RGB Width → Dust Absorption RC/RGB Color → Metallicity Main Sequence → Star Formation Rate

Conclusions

Maximizing the value of a WFIRST survey of nearby galaxies

Sample Selection: Number/properties we need for variety of projects

Distance Distribution: More tiling vs. longer exposures

Depth: What is optimal for various sub-projects?

Area: How far out in the halo does the science return decrease?

Filters: How many bands? Which bands?

Scheduling: Proper motion possibilities

Data Products: Crowded field photometry (including quality metrics)