Investigating the gas and dust content of our Galaxy at high resolution — What a WFIRST Galactic Plane Survey can tell us

Sean J. Carey
Spitzer Science Center /
IPAC / Caltech

## Advertisement – Spitzer Last Call

- Spitzer Cycle 13 released
- New Frontier Legacy (>2000 hr) category
- Letters of intent (>500 hr) due 24 March
- Proposals due 08 June
- 14000 hours available over 2 years
- 2000 of the 14000 hours in three DDT calls (Feb 2017, Aug 2017, Mar 2018)

#### Low Latitude Survey with WFIRST

- Some large swath of Galactic plane
  - Most of the action is within  $|b| < 1^{\circ}$ ,  $|1| < 60^{\circ}$
  - Nearby Star Forming Regions
  - Will see the entire Galaxy at fantastic resolution
    - 0.11 arcsec = 1100 AU at 10 kpc
  - Confusion limited observations of Galactic plane in days
- Measure Structure of Galaxy
- Examine Star Forming regions on large scales and in detail at same time
- Extinction mapping of Galaxy
- Evolved Stellar Population
- Supernova Remnants, Dust Shells, Outflows, ....

# Interesting things to learn about dust in ISM

- Study extinction law variations in detail
- Carriers of DiffuseInterstellar Bands
- Transition from interstellar grains to proto-planetary grains







#### Extinction Mapping

- Color excess method, many variants usingNIR J, H, K
- Resolution (~3 arcmin)
   and depth (A<sub>V</sub>~ 20)
   limited by depth of
   data (2MASS)
- WFIRST has potentialto resolve molecularcloud cores (0.1 pc)throughout Galaxy



Juvela et al. (2015)

## Constraining and Characterizing the Galactic Population of Young Stars with WFIRST

See Poster # 22, R. Paladini

#### AA Tau (Class II)



**IRAC** 

WFIRST can break model degeneracies for tens of thousands of YSO SEDs!

JHK + IRAC

JHK + IRAC + MIPS 24 μm + MIPS 70 μm

UBVRI + JHK + IRAC + MIPS 24 μm + MIPS 70 μm

UBVRI + JHK + IRAC + MIPS 24  $\mu$ m + MIPS 70  $\mu$ m + sub-mm

Robitaille et al. 2007

### Modeling of Protostars -- Roberta

Roberta's excellent material goes here



### Gas in Star Forming Regions

- Morphology of diffuse emission will be interesting
- Accretion indicators:  $H\alpha$  (0.656  $\mu$ m) and  $Pa\beta$  (1.282  $\mu$ m) will require grism to be have bluer cutoff
- $H_2$  (2.12  $\mu$ m) indicating outflows will require grism to be redder



#### Protostellar Variability

- CoRoT, Spitzer, K2 monitoring of star forming regions have provided a wealth of high quality light curves in the visible and mid-IR
- WFIRST monitoring of star forming regions will provide considerably more information on accretion, disk structure and protostellar activity
- Trick will be being able to classify and model observed light curves





#### Motion of HH Objects



- Time history of outflows for entire star forming regions
- Identification and proper motion measurement of distant HH objects using improved astrometry of WFIRST
- Would require early epoch

Raga et al. (2012)

#### Supernova Remnants

- Ideally map 1.257 and 1.644 µm [Fe II] lines as well as 2.12 µm H<sub>2</sub> 1-0 S(1) line
  - Morphology of shock fronts
- Identify SN
  Remnants in
  Galactic plane
  from morphology
  of features in
  broad-band
  surveys



 $1.257 \, \mu m$ 

 $1.644 \mu m$ 

IC 443: Kokusho et al. (2013)9

Poster 20: P. Morris, S. van Dyk, J. Mauerhan, G. Morello, A. Marston

The known **Wolf-Rayet and LBV** population in the MW is 45% - 95% low compared to empirical estimates → average lifetimes from evolutionary models in galaxies (at varied metallicity) are uncertain by up to factor 10.



Our team developed a successful method to use 2MASS and GLIMPSE broad-band colors + ground-based spectroscopy to reveal reddened WRs, LBVs. ~20% added to the known population so far.

The method is limited by confusion, population degeneracies (e.g. Ae/Be stars) → Completeness is uncertain.

#### Population degeneracies may be lifted (→ completeness better estimated) by

- A WFI survey of the Galactic Plane <u>unbiased</u>, using YZJHF filters. (K desirable).
- A machine learning method under development, exploiting massive star SED shapes vs other vermin.

#### **Evolved Stars Shells**

- Blind searchescan yieldinteresting results– MIPSGALbubbles
- Find gas/dust
   shells around
   massive and low
   mass evolved
   stars



Montage courtesy of N. Flagey

#### Summary

- Lots of value in low latitude survey
  - Large areas can be mapped efficiently
- Serendipity and statistics are key
- Galactic science would benefit
   from extension of grism in red and
   blue directions
  - Personal preference is redder
  - Optimal telescope background not necessary
  - Complex regions will be interesting data reduction challenge with grism
- Narrow band filters would be grand ( $H_2$  2.12  $\mu$ m,  $H\alpha$ )

