Finding the First Cosmic Explosions with WFIRST

Daniel Whalen

Institute for Cosmology and Gravitation

University of Portsmouth

Numerical Simulations of Pop III Star Formation

Observational Probes of the Properties of The First Stars

- direct detection of Pop III stars not possible now or even with 30 – 40 m class telescopes
- might get lucky and catch the lensed H II region of a Pop III star, but need a magnification µ > 300 (Rydberg et al. 2013)
- stellar archaeology: hunting for the ashes of the first SNe in ancient, dim metal-poor stars

Direct Detection of Pop III SNe in the NIR

- Pop III SNe are hundreds of thousands times brighter than their host galaxies
- build up a rough Pop III IMF by binning transients by explosion type
- constrain cosmic star formation rates by counting transients

Final Fates of the First Stars Heger & Woosley 2002, ApJ 567, 532

Los Alamos Supernova Light Curve Project

Frey, Even, Whalen et al. 2013 ApJS, 204, 16

- model final pre-SN structure of star with a stellar evolution code such as Kepler
- simulate explosion in the Los Alamos RAGE rad hydro code
- post process RAGE profiles with SPECTRUM code to compute spectra and light curves
- use the LANL OPLIB database of atomic opacities to get absorption / emission lines

PI SN NIR light curves

CC SN NIR light curves

- JWST and 30 40 m telescopes will see PI and PPI SNe out to z ~ 20 - 30
- CC SNe and explosions of compact progenitors will be visible at z ~ 10 - 15

- JWST and the ELTs have high sensitivities that can capture PI SNe at any epoch, but their narrow fields of view may not encounter many events
- they will also only detect CC SNe out to z ~ 10 -15, the era of the first galaxies, not first light
- the Pop III IMF cannot be constrained with PI SNe alone, need CC SN detections at z ~ 20

Cluster Lenses as Cosmic Telescopes

J0717

Cluster Surveys of High Redshift SNe with JWST and ELTs

CLASH SN detection rates

Frontier Fields SN detection rates

WFIR T Wide-Field Infrared Survey Telescope

5.04 deg² Deep SN Survey: AB mag 29.3 @ 2 µm

- WFIRST can see PI SNe at z ~ 15 20
- it will see CC SNe at z ~ 7 10
- the 5.04 deg² Deep SN survey field could enclose tens of thousands of cluster lenses
- these lenses could boost flux from CC SNe at z ~ 20 above the 29.3 AB mag limit of the survey in the NIR
- if so, WFIRST might capture hundreds or thousands of Pop III CC SNe at this epoch

Constraining the Pop III IMF and SFRs with WFIRST

- we are now constructing strong lensing magnification maps for the WFIRST Deep SN field
- we will convolve these pdfs with our SN light curves to estimate CC SN detection rates at 5 < z < 20
- the detection of lensed CC SNe at z ~ 20 by WFIRST with PI SNe, which need no magnification, could constrain the Pop III IMF
- these detections could also probe cosmic SFRs down to the least optimistic values predicted by simulations