

Time-Domain Astronomy with WFIRST

Brad Cenko NASA GSFC March 2, 2016

Time-Domain Astronomy with WFIRST

- Electromagnetic (EM) counterparts of gravitational wave (GW) sources
- Superluminous Supernovae (SLSN)
 - See talks by Lin Yan, Dan Whalen
- Intermediate Luminosity Red Transients (ILRT)
 - * See talk by Schuyler van Dyk

Take-Home Messages

- Time-domain science requires a robust target-ofopportunity capability
- * Cadence, cadence, cadence ...
- ◆ Prompt data downlink and processing ⇒ prompt transient notification (community follow-up)

Advanced LIGO/Virgo Network

Hanford + Livingston (aLIGO), Cascina (Virgo), KAGRA (Japan), IndIGO (India?)

Direct Detection of Gravitational Waves!

Merger of two ~ 30 M_{sun} black holes!!!

Why Electromagnetic Counterparts?

- GW detectors provide chirp mass, luminosity distance, (crude) inclination angle
- * EM counterpart provides:
 - redshift (H₀?)
 - Astrophysical context (host, offset)
 - Composition (r-process nucleosynthesis)
 - Inclination

Rosswog et al., 2012

What will an EM counterpart look like?

On-axis: Short Gamma-ray Burst; Off-axis: Kilonova

"Kilonova" Light Curves

- Due to r-process nucleosynthesis (lanthanides), very large opacity
 - much redder than supernovae
- Timescale ~ days to weeks
- Late-time (~ 1 week) "bump" in NIR light curve of short GRB 130603B, with no corresponding optical signal
- Still waiting for confirmation from additional nearby shorthard GRBs

aLIGO in WFIRST Era

	Estimated	$E_{ m GW}=10^{-2}M_\odot c^2$				Number	% BNS	Localized
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	5deg^2	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	_	40 - 80	-	0.0004 - 3	-	_
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Expect tens of binary neutron star (BNS) detections per year in WFIRST era (but large uncertainties)!

Unique role for WFIRST in GW Follow-Up

- WFI field-of-view
 reasonable for expected
 GW localizations
- Required sensitivity cannot be achieved from ground
- ★ Real-time identification
 ⇒ spectroscopic followup with JWST and / or GSMTs (TMT, GMT, E-ELT)

GW Follow-Up: Further Work

- GW follow-up requires ToO response time of ~ 1 day (as well as prompt downlink, processing, and subtractions)
- Can the observatory support this capability? Yes (at least right now).
- * Can other observing programs support ToOs (e.g. interrupt SNe and microlensing cadences)? TBD.

Transient Phase Space Diagram

Wide-field transient surveys have uncovered a number of new transient classes in the last decade. Here I will focus on SLSN and ILRTs.

Superluminous Supernovae

- SLSN: Peak absolute magnitude < -21; (rest-frame) time scales months to years
- Diverse power sources: circumstellar interaction, central engine (magnetar?), large Ni mass (pair instability)
- Rates serve as probes of star formation across cosmic history
- Pair instability events detectable out to epoch of reionization

Tanaka et al., 2013

SLSN: Further Work

- * Even using low-redshift rates, thousands of SLSN in the HLS survey out to $z \sim 7$
- But: identifying them requires an intelligent cadence for HLS (regular observations with temporal separation of months to years)
- * SLSN also of great interest for GO programs

Intermediate Luminosity Red Transients

- ILRT: "Gap" transients with luminosity between novae and supernovae (-10 < M_V < -14)
- Spitzer Infrared Intensive Transients Survey (SPIRITS: PI Kasliwal) - new IR gap transients with no optical counterpart
- Likely multiple source populations, possibly including stellar mergers, massive star eruption, failed supernovae

ILRT: Further Work

- Sensitivity of WFIRST implies ILRTs can be found in unbiased surveys
- ∗ But timescales probably too short for HLS ⇒ GI
 programs probably required
- Could be folded into nearby galaxy survey programs if cadence appropriately matched
- * Regardless requires prompt data processing (image subtraction!) and transient notification

Take-Home Messages

- Time-domain science requires a robust target-ofopportunity capability
- * Cadence, cadence, cadence ...
- ◆ Prompt data downlink and processing ⇒ prompt transient notification (community follow-up)