The metallicity evolution of galaxies

New science in the era of large area grism surveys
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While we are bullding consensus on the growth of stars
N galaxies, do we really understand why and how!
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Feedback Is required but highly
uncertain. Constraints from many
different feedback-sensitive
observations are necessary.




How do metals tell us about feedback
and the baryon cycle?

* pristine gas inflows:

* fuel star-formation

* gas recycling from halo (creates metals)

* dilute existing metallicity

« outflows:

* slows star-formation
(feedback)

* removes gas that may be
preferentially enriched
(relative to average ISM)

credit: NASA/STScl/Ann Feild

All of these processes depend on mass (gravity), and evolution with redshift
is expected.



[ he mass-metallicity relation

» Locally, mass and metallicity correlate
tightly.
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» Settled with oxygen abundance
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measurements from ~50,000
galaxies in the SDSS
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explanation

of course, we want to measure evolution. IR spectroscopy required.



Slitless spectroscopy with
the Hubble Space Telescope
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Combining two grisms (G102+G141) cover metallicity sensitive
lines from 1.3 <z <2.3.



Measuring metallicity with the
HS T WISP Survey
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* First result from 29 fields + Hubble Ultra
Deep Field

* No requirement that HP be detected in

individual spectra
* We found 83 galaxies
« The best solution was stacking— averaging
spectra together to get better signal-to-

noise

* low-mass stack is 1.5 dex lower mass than
most ground-based spectroscopic surveys.



The WISP mass-metallicity relation
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L ower mass cutoff is |.5 dex below previous work!
B alliiien about 0.3 dex from z~ 16 toiz =l



WISP s just the beginning!

The WISP Sky
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* The Grism Lens-Amplified
Survey from Space (GLASS;PI
Treu) targets |0 strong lensing
clusters; luminosities ~10x

deeper than WISP.

* Will extend the7mass-metallicity

relation to ~10 M,



line flux detected at SNR=10 in 10%s (erg s cm®)

And JWST....

R=600-2400 spectroscopy, emission line, point source
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S0 what does WFIRST provide
for metallicity science!



VWhat does a wide-area grism
survey provide!

statistics = characterization of intrinsic scatter
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* SFR scatter found in SDSS

* evidence for stochastic,
accretion driven Sk
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VWhat does a wide-area grism
survey provide!

statistics = characterization of intrinsic scatter
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VWhat does a wide-area grism
survey provide!

statistics = characterization of intrinsic scatter
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the simulation results is shown in Fig. 8.

Hopkins et al. (2012)



VWhat do we need to measure metallicity
with WHEIRST?

the trade space on line diagnostics (the main contenders)

« Option |: [NII}/Hx

4.01e=18

+ close in wavelength, usable over z~1-2

3.5

+ needed for the BPT diagram

3.0

— need higher dispersion (current = | | A/pix) .
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+ getting O/H doesn’t depend on N/O ratios
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— needs broader wavelength coverage than [.35 to

1.95 um: simulated WFIRST spectrum (. Colbert)
* no [Oll] to H Hx + [N”] ~[0'6 erg ST Gl

. [Oll] to [Olll] for only 2.7 <z<2.9 [NII]/Hx = 0.29

— or ground-based spectroscopy (e.g DESI? PFS?)

metallicity diagnhostic issues will have to be addressed as well...



Addressing diagnostic issue by stacking ~500
SDSS/BOSS spectra.
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Stacking SDSS/BOSS spectra of Green-Pea-like galaxies brings us into an entirely different
diagnostic regime (think, HIl region spectroscopy!):

- multiple electron temperature/metallicity diagnostics!
nebular He Il 4686——counting the hard ionizing photons

- density diagnostics from more highly ionized zones ([Cl llI], [Ar 1V])

- stacked subsets by BPT diagram location will test whether N/O or something else causes
offset



Conclusions

» Gas-phase metallicities are key to understanding the baryon cycle- the inflows

that feed galaxies and outflows that slow star-formation

« Sensitive, multi-object IR spectroscopy is now opening up redshift evolution by
accessing diagnostics.

* WFIRST will unlock the scatter in the mass-metallicity relation, e.g.

» size/morphology/surface density
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