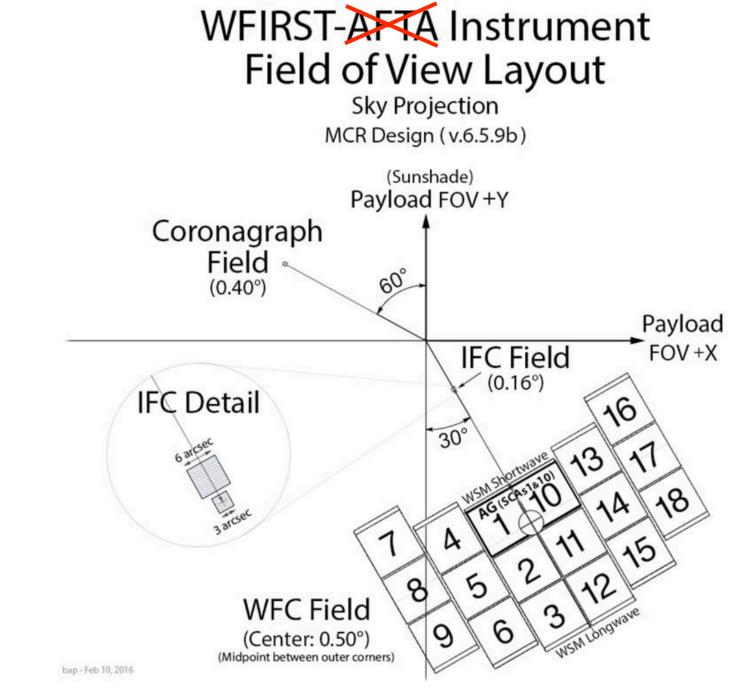
WFIRST Scheduling Issues

Christopher Hirata Pasadena (September 15, 2016)

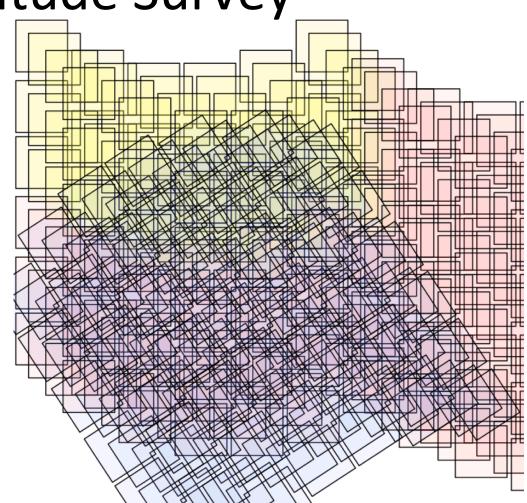
Current Status


- Scheduling systems are a Science Center responsibility
- Working group co-chaired by Mark Giuliano (STScI) and Chris Hirata (OSU)
- Leveraging past efforts:
 - SDT "proof of principle" exercise (GEO and L2)
 - STScI scheduling study (2015)
 - Existing expertise on coronagraph scheduling
- No final decisions on the footprint or survey strategy are being made yet.
 - We do need to have an existence proof at every stage.
 - Optimization of the survey design will continue at least through commissioning.

WFIRST Challenges

- Lots of science programs trying to fit into the schedule, each with their own constraints:
 - High latitude survey multiple passes over large chunk of the sky; avoid Galactic plane, ~2 years of mission time
 - Supernovae low dust, low zodi, interspersed visits spanning the whole annual cycle, selection of IFC targets
 - Microlensing continuous use of the telescope during ~6 "seasons" where Galactic Bulge well placed
 - Coronagraph ~1 year total, interspersed through the mission, maybe in large chunks
 - GO as selected by the TAC
- Everyone would like to get more time early in the mission

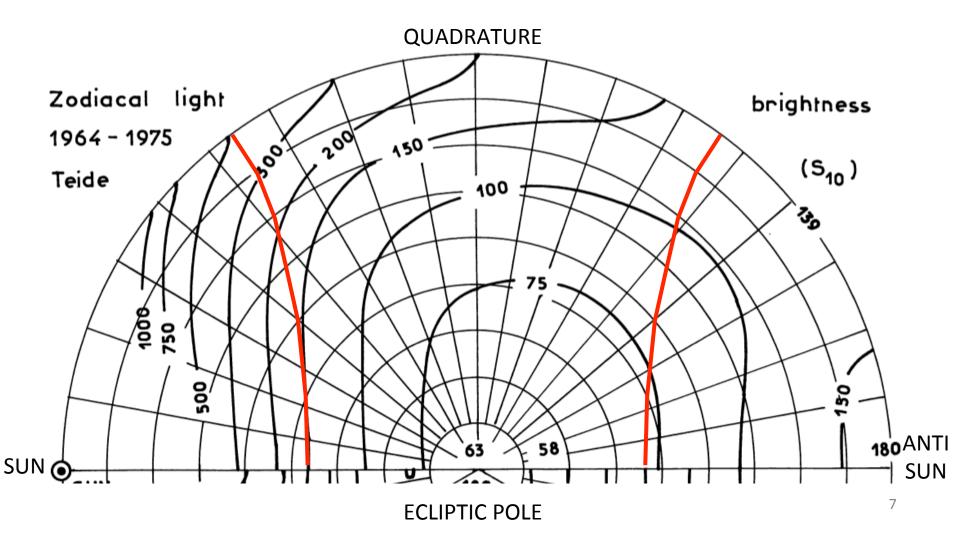
WFIRST Challenges


- Observatory constraints can point 54—126° from Sun, roll ±15°;
 Sun moves according to annual cycle
- Sky brightness minimum near Ecliptic poles, maximum in plane near the Sun. Galactic Plane is tilted ~60° to Ecliptic (bulge near Ecliptic).
- Ground overlap with South (e.g. LSST), North (e.g. Subaru). Best would be the equator but this is highest sky brightness.
- Tiling with modest number of dither positions, roll constraints, and "arced" 6x3 field, surveys require careful attention.
- Geosynchronous orbit constraints Earth (daily), Moon (monthly), orbit precession (secular) We're going to L2.

http://wfirst.gsfc.nasa.gov/science/Inst_Ref_Info_Cycle6.html

High Latitude Survey

- Notional survey is 4 filters (Y, J, H, 1.8μm)
- 5—7 observations per filter, split among 2 roll angles observed at different epochs
- Similar for the grism but would use 4 roll angles
- Placed within LSST footprint and far from the Galactic Plane

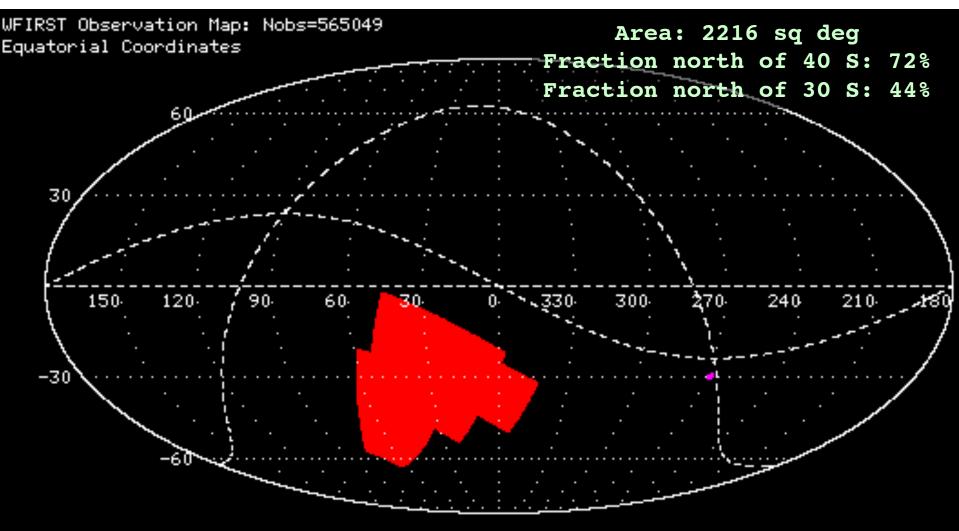


 All details (# dithers/rolls; exposure time vs. area; footprint location) to be refined going forward, up to the time the survey begins.

(Average) zodiacal brightness

[Dumont & Sánchez 1976]

Red lines indicate WFIRST observing limits.



Example Schedules

- Carried out to show that WFIRST could conduct the planned surveys without collisions
 - Not fully optimized, not with the software that we will use for the final schedule (latter to be developed)
 - We expect changes (maybe significant) to the survey strategy from each science area as informed by new discoveries, lessons learned from other projects, and the realized observatory performance
- This is not a policy decision e.g. the example schedule weighted strategic programs early in the mission, other variants also work.

Example Footprint

[Equatorial Coordinates]

Example (2015)

WFIRST OBSERVING TIMELINE	Guest observer Galactic plane Coronagraph E Microlensing HLS - imaging C Supernova HLS - spectroscopy L																			
_	1.00	-0°-6	9.00 8.00	6.00 5.00	- 8- 2-8-	2.8	1.00 ⁻	8 8	8.00 -	5.00	3.00	2.00		9. 6 - 8. 6	7.00 ¹	6.00	•• •	2.00	2.8	0.00
	60614.00 2024-10-31.	60694.00 2025-01-19.00 60774.00	2025-04-09.00 60854.00 2025-06-28.00	60934.00 2025-09-16.00 61014.00 2025-12-05.00	61094.00 2026-02-23.00 61174.00	2026-03-14.00 61254.00 2026-08-02.00	51334.00 2026-10-21.00 61414.00 2027-01-09.00	61494.00 2027-03-30.00	615/4.00 2027-06-18.00 61654.00 2027-09-06.00	61734.00 2027-11-25.00 61814.00	2028-02-13.00 61894.00 2028-05-03.00	61974.00 2028-07-22.00	62054.00 2028-10-10.00 62134.00	2028-12-29.00 62214.00 2029-03-19.00	62294.00 2029-06-07.00	62374.00 2029-08-26.00	62454.00 2029-11-14.00 62534.00	2030-02-02.00 62614.00 2030-04-23.00	62694.00 2030-07-12.00	62774.00 2030-09-30.00

Significant Issues

- Need to account for all demands on time
 - Currently re-working allocations for calibration and losses (transitioning from notional allocations to bottoms-up estimates)
- (Potential) conflicts
 - DE and $\mu \text{lensing}$ are happy to observe at different times of year
 - HLS is a big program and preferentially occupies certain months.
 - Does this change depending on the SN strategy, coordination with ground-based observatories?
 - Long coronagraph characterization observations not consistent with 5 day cadence for SNe
- Operational issues, e.g.:
 - How dynamic is the scheduling?
 - What is done by science teams vs. Science Center?

Significant Issues II

- HLS Placement and timing
 - Could move farther north to improve fraction accessible from Subaru, at expense of zodi brightness
 - GI science with the HLS, especially astrometry
- Significant dependence on when we launch?
 - Microlensing, HLS availabilities are on a yearly cycle
 - L2 orbit geometry/phase?
- Policy guidance from Project/HQ
 - Our working group doesn't make policies, we implement them

Discussion