Modeling Stars and Dust with the BEAST

Lea Hagen

Postdoctoral Fellow STScl

BEAST, METAL, SMIDGE, LUVIT, and PHAT teams

Flux

Log

03 04 0.5

07

Wavelength (µm)

10

The BEAST (Gordon+16) Bayesian Extinction And Stellar Tool

- SED fitter for individual stars: stellar and dust physics
- Use probabilistic/Bayesian techniques: can include priors, and allows for hierarchical models
- Artificial star tests to create accurate noise model
- Fast (~7 seconds per star) to fit 100M+ stars
- Open source and open development: github.com/BEAST-Fitting/beast
- Current active developers: Boyer, Choi, Durbin, Gordon, Goldman, Hagen, Johnson, Murray, Tchernyshyov, Van de Putte, Williams, Yanchulova Merica-Jones

The BEAST: 7 fitting parameters

Stellar parameters: birth mass, age, metallicity \rightarrow map to radius, T_{eff}, log(g)

Dust parameters: A_V (dust column), R_V (grain size), f_A (mixing between dust with/without 2175 Å bump)

Distance: can be constant or variable

The BEAST: 7 fitting parameters

SED construction

The family of extinction curves: varying R_V and f_A

The BEAST: source crowding impacts the noise properties

Gordon+16

The BEAST: example fit for a PHAT source

Primary parameters: Ay, mass, age

Secondary parameters: R_V, f_A, metallicity

Gordon+16

IC1613: ANGST+LUVIT HST imaging

Pls: J. Dalcanton, K. Gilbert

Naive maps of parameters in IC1613

Average of best-fit A_V and R_V in 10" pixels

Simulate WFIRST observations using overlapping HST filters

Naive maps of parameters in IC1613

MegaBEAST is in development

- Hierarchical Bayesian model for ensembles of stellar populations
- Use BEAST outputs to fit for parameters within 10" pixels

Science Goals star formation history initial mass function mass-metallicity relationship total dust column (A_V) average grain size (R_V) grain composition measure (f_A) galaxy distance galaxy depth

github.com/BEAST-Fitting/megabeast

Inclusive Astronomy 2

October 14-15, 2019 STScl, Baltimore, MD

www.tiny.cc/InclusiveAstro2

NCLUSIVE ASTRONOMY 2

October 14–15, 2019 Baltimore • MD Space Telescope Science Institute

All students, astronomers, social scientists, policy makers, and advocates:

WWWAAAA

Come take part in a community discussion to build upon the 2015 Nashville Recommendations, reflect on the state of the profession, address issues affecting underrepresented groups, and envision how to improve astronomy into the 2020s.

www.tiny.cc/InclusiveAstro2 • Inclusion2@stsci.edu

Takeaways

- The BEAST is ready to be used for modeling resolved stellar sources: mass, age, metallicity, A_V, R_V, f_A, distance
- The MegaBEAST will combine BEAST results to infer properties of ensemble populations
- WFIRST will allow much of the HST-based BEAST/ MegaBEAST science to expand to large regions of Local Group galaxies

Code contributions are welcomed!

github.com/BEAST-Fitting

bonus slides

Planned model grid: LMC, SMC, M33, M31, nearby dwarfs

Quantity	Min	Max	Step size	# points
log age	6.0	10.13	0.1	42
log Z	-2.3	0.1	0.3	9
Av	0.01	10.0	0.05	200
Rv	2.0	6.0	0.5	9
f _A	0.0	1.0	0.2	6
distance	_	_	_	5-10

Priors

 R_V and f_A

Age and mass

Parameter uncertainties

Sensitivity tests

Input