Credit: NASA, ESA, PHAT Team

EXPLORING THE DYNAMIC INFRARED SKY WITH WFIRST

Jacob Jencson Caltech Astronomy Advisor: Mansi Kasliwal WFIRST Local Group Conference Pasadena, CA June 20, 2019

THE DYNAMIC INFRARED SKY IS PRISTINE!

THE INFRARED SKY IS DYNAMIC! REALLY

SPitzer Infra**R**ed Intensive **T**ransients **S**urvey: A targeted search of nearby galaxies for transients in the infrared.

1690 hours over 6 years with *Spitzer/IRAC*

Cycles 10-12 (2014-2016) 194 galaxies × 10 epochs

Cycles | 3-|4 (20|7-20|9) |05 galaxies x 8 epochs

Sample within ~ 35 Mpc

Depth of 20 mag (Vega) at [3.6] and 19 mag at [4.5]

Cadence baselines spanning one week to several years

Jacob Jencson

PI: M Kasliwal, Project Scientist: J Jencson Team: S Adams, R Lau, S Tinyanont, M Hankins, V Karambelkar, L Armus, G Helou, F Masci, S Van Dyk, A Cody, M Boyer, H Bond, J Bally, O Fox, R Williams, P Whitelock, R Gehrz, N Smith, J Johansson, D Perley, E Hsiao, M Phillips, N Morell, C Contreras, M Ressler, D Cook+

June 20, 2019

SPIRITS had discovered a diverse array of IR transient sources.

Identified 98+ transients:

- 49 known supernovae
- 5 likely novae
- 35+ eSPecially Red Intermediate-Luminosity Transient Events (SPRITEs; e.g., Kasliwal+ 2017, Jencson+ in prep.)

Jencson PhDT: 9 newly discovered luminous IR transients ATels: Kasliwal+ 2014: #6644

Jencson+ 2015-19: #7929, 8688, 8940, 9434, 10171, 10172, 10488, 10903, 11575, 12089, 12675

WFIRST will enable rapid coverage of large, local galaxies.

	WFIRST				Spitzer/IRAC		
			ALL COL	. TRACT			
				300	-		

Credit: NASA/JPL-Caltech

June 20, 2019

Luminous IR transients: Obscured SNe and dust-forming massive star outbursts.

IR-discovered transients compared to optically known events in SPIRITS

Selection criteria:

- I. $M_{IR} < -14 \text{ mag}$
- II. At least 2 Spitzer detections
- III. Pre-explosion non-detection in SPIRITS data

SPIRITS events found predominantly in starforming hosts. [4azy]15c, [4buu]15ud

All have optical/near-IR photometric coverage

6 with optical/near-IR spectroscopy

Radio follow-up with VLA and ATCA

"Supernova Rate Problem": Does the core-collapse supernova rate match the formation rate of massive stars?

Horiuchi+ 2011, but see, e.g., Botticella et al. 2012; Horiuchi et al. 2013; Cappellaro+ 2015; Xiao & Eldridge 2015

Fraction of optically missed, nearby supernove in SPIRITS galaxies is $38.5^{+26.0}_{-21.9}\%$

Fraction of optically missed, nearby supernove in SPIRITS galaxies is $38.5^{+26.0}_{-21.9}\%$

SPIRITS 16tn: an explosion in a giant molecular cloud? 5

2.0 2.2 2.4 1.8 2.62.83.0 Fade timescale at [4.5] (log[days]) SPIRITS 16tn: $A_V = 8$ mag SPIRITS 16ix: $A_V > 5.5$ mag

> Jencson+ 2018; lencson+ 2019a, arXiv:1901.00871

Jacob Jencson

10/18

Two sources undergoing multiple IR outbursts.

WFIRST will naturally enable detailed **SPIRITS 17pc** progenitor studies of IR transients.

eSPecially Red Intermediate-Luminosity Transient Events

June 20, 2019

SPRITEs likely represent a range of diverse origins.

Possible SPRITE origins:

Dynamical interactions in star-forming regions

Bally & Zinnecker 2005, Kasliwal+ 2017, Jencson+ in prep.

Jacob Jencson

June 20, 2019

Possible SPRITE origins:

Common-envelope ejections and stellar

See also, e.g., Blagorodnova+ 2017, Metzger & Pejcha 2017

Jacob Jencson

Possible SPRITE origins:

Colliding-wind binaries:

First candidate in M33 (Garofali+ 2019):

X-ray (Chandra) SPIRITS 19q:

Optical (HST)

SPIRITS 16In:

New

Ref

Sub

Infrared (Spitzer)

Sub

M Hankins, R Lau, et al., in prep.

SDSS

June 20, 2019

The dynamic IR sky is wide open for exploration!

WFIRST is unquily equiped to probe emergaing classes of diverse IR transient phenomena. Highlights: Wide field, high angular resolution, superior depth

Optimizing WFIRST for transient science: -Cadenced observations of local group, nearby galaxies, and MW star-forming reigons -Filters as red as possible Auxiliary Slides

A new intermediate-luminosity red transient in M51 from a massive, dust-obscured progenitor

Jencson+ 2019b, arXiv:1904.07857

Radio observations provide confirmation, type information, and probe pre-SN mass loss.

SPIRITS 14buu, 15c, & 17lb: 3 SNe in 4 years in IC 2163.

A simple reddening law can explain the observed light curves.

 $A_V = 2.2 \text{ mag}, E(B-V) = 0.72 \text{ mag}, R_V = 3.1 \text{ (Fitzpatrick 99)}$

Light curves of SPIRITS 14buu consistent with a reddened SN IIP.

Appears similar to the type IIP SN 2005cs in the optical and near-IR with $A_V = 1.5$ mag.

Mid-IR evolution similar to SN 2004et (shifted by 2.4 mag).

The near-IR spectrum of SPIRITS 15c is similar to that of Type IIb SN 2011dh.

SPIRITS 16th is unique in its mid-IR properties.

SPIRITS 16tn comparison to SN 2005cs suggests $A_V = 8$ mag.

Comparisons with Type II SNe suggest $A_V \sim 7 - 9$ mag for SPIRITS 16tn.

Near-IR spectrum of SPIRITS 16th rules out an SN Ia.

Optical and IR samples are similar in their IR properties.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0

0.5

1.0

Normalized count

IR light curve diagnostics with full sample of *Spitzer* supernovae.

Fraction of optically missed, nearby supernove in SPIRITS galaxies is $38.5_{-21.9}^{+26.0}$ %

Optical/near-IR coverage indicates significant extinction.

Based on direct SN light curve comparisons (Jencson+ 2017, 2018):

A stellar merger and an SN 2008S-like event:

CO features in luminous IR SPIRITS transients:

Radio light curves of SPIRITS 15c and SPIRITS 17lb

SPIRITS 17qm has likely not yet undergone terminal explosion.

Progenitors are obscured by dusty environments in archival HST imaging.

Optically-known SNe in SPIRITS

High-resolution searches have focused on extreme (U)LIRGs and starbursts.

8 confirmed obscured SNe from near-IR, high-resolution searches (e.g., Mattila+ 2007, 2008; Kankare+ 2008, 2012, Kool+ 2018).

Radio VLBI studies reveal scores of missed SNe (e.g., Perez-Torres+ 2009, Romero-Cañizales+ 2012).

Challenging with Spitzer in dense starbursts (e.g., O. Fox).

SN 2015cb in IRAS 17138-1017 with GeMS/GSAOI

A combination of IR searches will be sensitive to obscured SNe at a range of distances.

SPitzer InfraRed Intensive Transients Survey (SPIRITS):

• 3.6 and 4.5 µm targeted survey of nearby galaxies.

Palomar Gattini-IR (PG-IR):

- Nightly J-band survey of 15000 deg².
- Expect ~ 13 SNe within 50 Mpc in 1 year.

Zwicky Transient Facility (ZTF):

- i-band survey of 6700 deg² at 4-day cadence.
- Expect ~ 50 CCSN within 100 Mpc in 1 year.

Zwicky Transient Facility

Successor to iPTF on Palomar 48-in. Oschin Telescope

47 deg² FOV

Optical g and R-band surveys

i-band survey of 6700 deg² to 20.1 mag (AB) at 4 day cadence

Expect ~ 50 CCSNe within 100 Mpc in one year

Photo credit: Michael Feeney

ZTF will build spectroscopically complete samples of reddened SNe.

Red Transient discoveries:

ZTF18abdbysy: Reddened SN IIP

Palomar Gattini-IR: A wide-field, groundbased IR transient survey

300 mm aperture telescope

 $25 \text{ deg}^2 \text{ FOV}$

Survey 15000 deg² to J = 16.4 mag AB every night

Reach 17.5 mag in one week stack

Expect ~ 13 SNe within 50 Mpc in one year

PG-IR Team: M Kasliwal, A Moore, A Delacroix, D McKenna, S Adams, R Lau, K De, J Soon, E Ofek, R Smith, T Travouillon, M Ashley, J Jencson+

Cahill Rooftop testing

"Supernova Rate Problem": The core-collapse supernova rate does not match the formation rate of massive stars.

SN rate tracks trend in star formation

Overall normalization discrepancy by factor of 2

Not enough supernovae are seen for the number of massive stars formed in the Universe

Characterizing the extinction in obscured SNe can probe local conditions.

 R_V dependent extinction curves

