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UKIRT 2015-2016 microlensing surveys
2015 survey – Spitzer:
• Area: 3.4 deg2

• Duration: 39 nights

• Cadence: 5 epochs/night

• Total epochs per field: ~145

• Filter: H

2016 survey – K2C9:
• Area: 6.0 deg2

• Duration: 91 nights

• Cadence: 2-3 epochs/night

• Total epochs per field: ~160

• Filter: H

Shvartzvald et al. 2017



UKIRT 2017-2019 microlensing survey

2017-2019 survey – WFIRST:
• Area: 10.5 deg2

• ~20 million lightcurves

• Duration: ~4 months / season

• Cadence: 1-3 epochs / night

• Filters: H & K



UKIRT 2017-2019 microlensing survey

2017-2019 survey – WFIRST:
• Area: 10.5 deg2

• ~20 million lightcurves

• Duration: ~4 months / season

• Cadence: 1-3 epochs / night

• Filters: H & K

Sumi & Penny 2016



Unfortunately we cannot completely escape from by-eye analysis.        
The computer has to learn from the labeled examples we provide.

• We start with an event finder similar to KMT (Kim et al. 2018),
based on a 2-D (t0, teff) grid search

• Manual UKIRT Lightcurve Evaluator (MULE) –
a python-based GUI to assist with the by-eye vetting of lightcurves

We look at everything 
with Δχ2 > 500.

2015:    23 events (out of 562)

2016:    65 events (out of 844)

2017:  177 events (out of 2852)

2018:    83 events (out of 843)

By-Eye Results



UKIRT microlensing events

2015:    23 events 

2016:    65 events 

2017:  177 events 

2018:    83 events
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There is no way to calculate detection rates from a by-eye selection.  
Detection efficiency must be calculated based on some well-defined 

selection criteria – either machine learning or strict cuts.

Detection efficiency is calculated via simulated event injection/recovery.

• Inject events using PSF templates from PSFEx

• Run through full pipeline, including machine learning event detection

• Repeat for many stars, covering parameter space

Detection efficiency



Machine Learning for Event Detection

Machine learning has the potential to improve

- efficiency in detecting events

- consistency in detecting events

This is particularly true for larger datasets (WFIRST).

Meanwhile we are using UKIRT analysis as a pathfinder.

Goal 1:  Save time in detecting microlensing events

Goal 2:  Enable robust, efficient detection statistics

(cf. Wyrzykowski+ 2015: machine learning for OGLE data)



Machine-Learning Event Detection

How well do we do, compared to by-eye selection? 

Only a modest increase in the 
number of events detected   
(177 à 200).

A handful of the original 
detections were missed by the 
machine learning scheme.

There were 26 false detections 
(variable stars that look similar 
to microlensing events).

(cf. OGLE; Wyrzykowski+ 2015)



Machine-Learning Detection Efficiency

Injections of events into images are in progress.  
Meanwhile we are injecting events directly into light curves.

à up to 60% detection efficiency

This is very high,          
particularly when considering the 
limitations of the UKIRT dataset              
(just 2 short seasons).



Near-IR event rate

Preliminary results:
1. High event rate in the central fields

2. No excess of events in the northern bulge



Additional Science
2015:

• A massive remnant in wide binary: 

OGLE-2015-1285 (Shvartzvald et al. 2015)

2016:

• Planets: 

MOA-2016-227 (Koshimoto et al. 2017)

OGLE-2016-0163 (Han et al. 2017)

OGLE-2016-1190 (Ryu et al. submitted)

OGLE-2016-0241 (Poleski et al. in prep.)     

2017:

• Planet: 

OGLE-2017-0173 (Hwang et al. 2017)

(I-H) [OGLE-UKIRT]

OGLE-15-1285

OGLE-16-0163



UKIRT-2017-BLG-001b (Yos-1)
2015:
• A massive remnant in wide binary: 

OGLE-2015-1285 (Shvartzvald et al. 2015)

(I-H) [OGLE-UKIRT]

Shvartzvald et al. 2018



Differential Extinction

Differential extinction reduces the accuracy of source star determination,
e.g. UKIRT-2017-BLG-001Lb (Shvartzvald+ 2018),
with clump color dispersion = 0.16 mag  (cf. 0.04 mag intrinsic) and
clump magnitude dispersion = 0.35 mag (cf. 0.17 mag intrinsic)



Summary

The UKIRT microlensing survey is serving as a precursor for WFIRST by 
• mapping the microlensing event rate
• identifying regions with high differential extinction
• developing analysis tools (e.g. machine learning)
• enabling hands-on experience for new microlensers (e.g. me)

Beyond microlensing, the survey data is available for 
• variable stars 
• outlier events
• extinction maps
• Galactic structure
• etc.



Public Lightcurves

2015-2018 lightcurves are 
available online  
(78M independent lightcurves
for ~35M sources)

Standard NExScI archive tools 
for selection, sorting, 
visualization, etc.

Flagging of known events; 
cross-matching with OGLE/MOA 
microlensing surveys.

https://exoplanetarchive.ipac.caltech.edu/docs/UKIRTMission.html
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblSearch/nph-tblSearchInit?app=ExoTbls&config=ukirttimeseries



backup…



Scientific goals of UKIRT survey
NIR event rate as a function of (l,b):
• Crucial for WFIRST field optimization

• Combined with dust models à Galactic structure

Event timescale as a function of (l,b):
• Bulge-bulge events are expected to be shorter (Gould 1995)

NIR coverage of events:

• Source color - for Einstein radius (with finite source effects)

• NIR source flux - for future AO lens flux measurements

New science:

• High cadence (daily) observations of unexplored regions (Galactic center).



1. data reduction
2. microlensing event identification
3. completeness correction    
4. updated galactic model /

incorporation into mission yield simulations 
5. WFIRST target field selection

- event rate map
- differential extinction
- overlap with ground-based surveys / 
potential ground-based follow-up

Target Field Selection?



Extinction
• Median H-K reddening within 20-arcsec pixels.
• High extinction is a problem for visible-light observations.



Differential Extinction

• Based on CMD within 3-arcmin pixels,
using David Nataf’s code to find spread of the red clump.



Application to Binaries
The machine learning classifier has been optimized to identify 
single-lens-single-source events.  What about binaries?

Detection efficiency 
decreases for highly 
anomalous light curves,   
but not by much -
~10% reduction for q=0.1

Most importantly, this 
selection effect can be 
quantified and corrected.

45% 
detection 
efficiency

41% 
detection 
efficiency

45% 
detection 
efficiency

44% 
detection 
efficiency



Step 3: Pick a Classifier

A complicated N-dimensional space has to somehow be divided       
into different categories (microlensing, variable, artifact, etc).
There’s lots of options here:  

nearest neighbor, support vector machine, gaussian process,  
decision tree, random forest, neural net, AdaBoost, naive Bayes,...

We find that random forest is fast and accurate within our training set.

blue=microlensing events; red=other variables 



Step 2: Feature Selection
Class: Movies you like
Movie features:  
• length of movie name
• director
• genre

Class: Microlensing event
Light curve features:  
• flux, dispersion
• # of obs., # of successful obs.
• χ2 for microlens curve, flat line, sloped line, sinusoid, drop 1 or 2 pts.
• Δχ2 between those fits
• fit parameters and error bars for each fit
• time of event relative to observing window
• random numbers (for testing purposes)

à The classifier will tell you the ranked importance of each.



Goal 1: Efficiently Detect Events

How well do we do, compared to by-eye selection? 

The random-forest classifier 
provides a microlensing 
probability for each lightcurve.
These probabilities are not well 
calibrated, but they are 
meaningful relative to each 
other.

Normally we count an event as 
microlensing if the probability 
is >50%.
By varying this threshold, we 
can make a more conservative 
or more liberal selection. 



Machine learning vs traditional selection

MOA survey; Sumi et al. 2011

an example of deterministic cuts

with 10-20% detection efficiency

machine learning can give

40-60% detection efficiency

It is impossible to do a self-consistent comparison with OGLE/MOA.

Instead, we are working on a UKIRT vs UKIRT comparison,    

machine learning vs deterministic cuts. (w/ advice from Przemek).



UKIRT-2017-BLG-001: Extinction
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UKIRT-2017-BLG-001: Extinction
Lessons for WFIRST
• Red clump color dispersion: 

!(#$%&)=0.16

§ Intrinsic = 0.04

§ Reddening = 0.15

• Dust scale height = 120pc (0.86º@8kpc)

• Red clump magnitude dispersion: 
!%&=0.36

§ Intrinsic = 0.17

§ Extinction = 0.17

§ DM = 0.28!

• Thin disk scale height = 300pc 
(2.1º@8kpc)



UKIRT-2017-BLG-001: Extinction
Lessons for WFIRST
• Limitations of one season

• Estimation of !∗
…and thus physical properties 

• Far disk population

• Possible solutions:

• Multi-band information

• Avoid high spatial differential      
extinction fields

•>1º off the plane?


