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A Near-IR Survey with UKIRT

|-band microlensing surveys
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UKIRT 2015-2016 microlensing surveys

2015 survey — Spitzer:
 Area: 3.4 deg?
 Duration: 39 nights

» Cadence: 5 epochs/night
» Total epochs per field: ~145
* Filter: H

2016 survey — K2C9:
* Area: 6.0 deg?
 Duration: 91 nights

« Cadence: 2-3 epochs/night
* Total epochs per field: ~160
e Filter: H
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UKIRT 2017-2019 microlensing survey

2017-2019 survey — WFIRST:
* Area: 10.5 deg?

~20 million lightcurves 4 ‘

Duration: ~4 months / season 3
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UKIRT 2017-2019 microlensing survey

2017-2019 survey — WFIRST:
* Area: 10.5 deg?

« ~20 million lightcurves 4
e Duration: ~4 months / season 34
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By-Eye Results

Unfortunately we cannot completely escape from by-eye analysis.
The computer has to learn from the labeled examples we provide.

« We start with an event finder similar to KMT (Kim et al. 2018),
based on a 2-D (t,, t.) grid search

 Manual UKIRT Lightcurve Evaluator (MULE) —
a python-based GUI to assist with the by-eye vetting of lightcurves

Manual UKIRT Lightcurve Evaluator (MULE)
Category: Microlensing Your initials: gb

We IOOk at everyth|ng Al Unclassified  Microlensing  Variable  Glitch ~ Unknown 2015 2016 2017

Back to beginning Back one  Skip to next Quit

with Ax2 > 500. Type (mycrolens, (variabe, (u)nknown, or (g)tch
2015: 23 events (out of 562) |
2016: 65 events (out of 844)
2017: 177 events (out of 2852) Y i

2018: 83 events (out of 843) W e §X17393°
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UKIRT microlensing events

2015:
2016:
2017:
2018:

23 events
65 events
177 events

83 events
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Detection efficiency

There is no way to calculate detection rates from a by-eye selection.
Detection efficiency must be calculated based on some well-defined
selection criteria — either machine learning or strict cuts.

Detection efficiency is calculated via simulated event injection/recovery.
* Inject events using PSF templates from PSFEXx

* Run through full pipeline, including machine learning event detection
* Repeat for many stars, covering parameter space

Determining the NIR Microlensing Event Rate at
Ibl < 2 with the United Kingdom Infrared Telesco;
Savannah astiano

Savannah Jacklin
PhD student
Vanderbilt




Machine Learning for Event Detection

Machine learning has the potential to improve
- efficiency in detecting events
- consistency in detecting events
This is particularly true for larger datasets (WFIRST).

Meanwhile we are using UKIRT analysis as a pathfinder.

Goal 1: Save time in detecting microlensing events

Goal 2: Enable robust, efficient detection statistics

(cf. Wyrzykowski+ 2015: machine learning for OGLE data)




Machine-Learning Event Detection

How well do we do, compared to by-eye selection?
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A handful of the original
detections were missed by the
machine learning scheme.

There were 26 false detections
(variable stars that look similar
to microlensing events).

cumulative # of lightcurv

(cf. OGLE; Wyrzykowski+ 2015)
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Machine-Learning Detection Efficiency

Injections of events into images are in progress.
Meanwhile we are injecting events directly into light curves.
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This is very high,

particularly when considering the
limitations of the UKIRT dataset
(just 2 short seasons).
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Near-IR event rate

Preliminary results:

1. High event rate in the central fields
2. No excess of events in the northern bulge

0Summary Statistics: UKIRT 2015-2017 OSummary Statistics: UKIRT 2015-2017
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Additional Science

2015: (OGLE-15-1285

* A massive remnant in wide binary:

OGLE-2015-1285 (Shvartzvald et al. 2015) g T

2016: _ v

* Planets: ) s
MOA-2016-227 (Koshimoto et al. 2017) (I-H) [OGLE-UKIRT]
OGLE-2016-0163 (Han et al. 2017) a— OGLE-16-016 =

OGLE-2016-1190 (Ryu et al. submitted)
OGLE-2016-0241 (Poleski et al. in prep.)
2017

* Planet:
OGLE-2017-0173 (Hwang et al. 2017)




UKIRT-201/7-BLG-001b (Yos-1)
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Differential Extinction

Differential extinction reduces the accuracy of source star determination,
e.g. UKIRT-2017-BLG-001Lb (Shvartzvald+ 2018),

with clump color dispersion = 0.16 mag (cf. 0.04 mag intrinsic) and
clump magnitude dispersion = 0.35 mag (cf. 0.17 mag intrinsic)

LETTERS, 857:L8 (11pp), 2018 April 10
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Summary

The UKIRT microlensing survey is serving as a precursor for WFIRST by
* mapping the microlensing event rate

 identifying regions with high differential extinction

« developing analysis tools (e.g. machine learning)

« enabling hands-on experience for new microlensers (e.g. me)

Beyond microlensing, the survey data is available for
« variable stars

« outlier events

« extinction maps

« Galactic structure

* etc.
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Scientific goals of UKIRT survey

NIR event rate as a function of (/,b):
* Crucial for WFIRST field optimization

« Combined with dust models - Galactic structure

Event timescale as a function of (/,b):

 Bulge-bulge events are expected to be shorter (Gould 1995)

NIR coverage of events:

» Source color - for Einstein radius (with finite source effects)

* NIR source flux - for future AO lens flux measurements

New science:

» High cadence (daily) observations of unexplored regions (Galactic center).



Target Field Selection?

1. data reduction
2. microlensing event identification
3. completeness correction

4. updated galactic model /
Incorporation into mission yield simulations

5. WFIRST target field selection
- event rate map
- differential extinction
- overlap with ground-based surveys /
potential ground-based follow-up



Extinction

 Median H-K reddening within 20-arcsec pixels.
« High extinction is a problem for visible-light observations.
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Differential Extinction

Based on CMD within 3-arcmin pixels,

using David Nataf's code to find spread of the red clump.
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Application to Binaries

The machine learning classifier has been optimized to identify
single-lens-single-source events. What about binaries?
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Step 3: Pick a Classifier

A complicated N-dimensional space has to somehow be divided
into different categories (microlensing, variable, artifact, etc).
There’s lots of options here:
nearest neighbor, support vector machine, gaussian process,
decision tree, random forest, neural net, AdaBoost, naive Bayes,...
We find that random forest is fast and accurate within our training set.

Input data Nearest Neighbors Support Vector Machine Random Forest

sinusoidal fit

microlensing fit

blue=microlensing events; red=other variables




Step 2: Feature Selection

Class: Movies you like

Movie features:

* length of movie name
« director

e genre

Class: Microlensing event

Light curve features:

» flux, dispersion

 # of obs., # of successful obs.

« X2 for microlens curve, flat line, sloped line, sinusoid, drop 1 or 2 pts.
« Ax? between those fits

« fit parameters and error bars for each fit

« time of event relative to observing window

« random numbers (for testing purposes)

—> The classifier will tell you the ranked importance of each.




Goal 1: Efficiently Detect Events

How well do we do, compared to by-eye selection?

The random-forest classifier
provides a microlensing
probability for each lightcurve.
These probabilities are not well
calibrated, but they are
meaningful relative to each
other.

Normally we count an event as
microlensing if the probability
is >50%.

By varying this threshold, we
can make a more conservative
or more liberal selection.
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Machine learning vs traditional selection

machine learning can give
40-60% detection efficiency

0.7

o
[=)]
1

o
wn

Detection efficiency
o

o
[N

=4
=

0.0

o
+
1

2017 only
with 2018 for baseline

10 100

te (days)

Efficiency

0.01 0.02

an example of deterministic cuts
with 10-20% detection efficiency

0.2

0.1

0.05

o
N T
—_

ty (day)
MOA survey; Sumi et al. 2011

It is impossible to do a self-consistent comparison with OGLE/MOA.
Instead, we are working on a UKIRT vs UKIRT comparison,
machine learning vs deterministic cuts. (w/ advice from Przemek).



UKIRT-2017-BLG-001: Extinction
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UKIRT-2017-BLG-001: Extinction

| essons for WFIRST

* Red clump color dispersion:
O-(H—Ks)=o'16

» Intrinsic = 0.04
= Reddening =0.15
* Dust scale height = 120pc (0.86°@8kpc)

* Red clump magnitude dispersion:
ok =0.36

= |ntrinsic =0.17
= Extinction =0.17
= DM =0.28!

 Thin disk scale height = 300pc
(2.1°@8kpc)
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UKIRT-2017-BLG-001: Extinction

| essons for WFIRST

» Limitations of one season

 Estimation of 6,
...and thus physical properties

 Far disk population

* Possible solutions:
* Multi-band information

* Avoid high spatial differential
extinction fields

«>1° off the plane?
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