Galactic distribution of Planets with Spitzer as a precursor of the WFIRST microlensing survey

Science in Our Own Backyard:

exploring the Galaxy and the Local Group with WFIRST

June 18-20, 2019, IPAC/Caltech

Sebastiano Calchi Novati IPAC/Caltech

Spitzer team: Andy Gould, Jennifer Yee, Sean Carey, Yossi Shvartzvald, Chas Beichman, Geoff Bryden, SCN, Scott Gaudi, Calen Henderson, Weicheng Zang, Wei Zhu

Towards the Demographics of Exoplanets Microlensing and Exoplanets Astrophysics

Microlensing and the Galactic Distribution of Exoplanets

Looking for exoplanets all the way to the Galactic center

Bulge vs disk exoplanets

- Planet formation in different environments
- Impact of high radiation on protoplanetary disks
- Frequency vs age and metallicity

Microlensing Planet Distance Evaluation (before Spitzer)

- "Orbital" microlensing parallax
 - bias for nearby lenses
 - subtle signature degenerate with other second order effects
- Lens flux (AO)
 - bias for nearby lenses
- Bayesian analysis: statistical inference based on a prior model
 - *Q*: What about the underlying distribution?
 - A: We need the distance distribution for the underlying
 - single-lens event population or a Bayes analysis

unbiased planet distances measured all the way to the Galactic Bulge
distance distribution for the underlying single-lens event population

Spitzer Space Telescope

..... position, position, position....

Launch: 25 August 2003

Orbit: Earth-trailing, heliocentric

Telescope: 85 cm diameter

Camera: IRAC, 5. $2' \times 5.2'$ fov, 3.6 μm channel, 1.2"/px

6 weeks visibility window toward the Bulge during the summer (2014-now)

Possibility for "almost ToO" scheduling mode

At O(1 AU) Spitzer is the ideal second observer to measure the "satellite" microlensing parallax (Refsdal 1966, Gould 1994)

The microlensing parallax in the sky, π_E

Key to Measure the lens physical parameters

$$M = \frac{\theta_E}{k \pi_E} \qquad \pi_{rel} = \theta_E \pi_E$$
$$D_L = \frac{AU}{\pi_{rel} + \pi_S}$$

The angular Einstein radius, θ_E , is usually measured for planetary events – and occasionally for (high magnification) single-lens events -If not, the physical parameters can still be recovered at least statistically

The Spitzer Microlensing Campaign

follow up program for microlensing events selected from ground-based surveys (OGLE+MOA+KMT): ~ 2000 /year

almost 800 events observed so far

- ✓ 2014: 100 hr 62 evts DDT program
- ✓ 2015: 832 hr 169 evts full Bulge visibility window
- ✓ 2016: 350 hr 179 evts partly overlaps with K2C9
- ✓ 2017: 350 hr 176 evts
- ✓ 2018: 350 hr 177 evts KMTNet alerts
- ➢ 2019: 350 hr ongoing

Towards the Galactic Distribution of Exoplanets A follow-up microlensing campaign with a protocol for building a valid statistical sample

Spitzer Microlensing Campaign: 2014-2018

 \sim 760 microlensing events followed up so far

- ✓ 33 lens systems with well constrained physical parameters
 - 7 planetary systems
 - > 16 binary lens systems
 - **1** massive remnant in a well-separated binary
 - **2** brown dwarf- brown dwarf systems
 - **3** systems with a brown dwarf companion
 - 10 single lens systems
 - **2-4 brown dwarf lenses**
 - **1** Earth-Spitzer-K2C9 lens

 ✓ 62 single lens systems with measured microlensing parallax and statistical-based evaluation of the lens physical parameters (not shown in the plot)

Towards the Galactic Distribution of Exoplanets The Single Lens System Control Sample

Disk planet sensitivity \approx 2x Bulge planet sensitivity

Calchi Novati, IPAC/Caltech - June 18, 2019

Zhu+ (2017)

OGLE-2014-BLG-0124

8242

8243

8250

HJD-2450000

8244

8245

OGLE (I)

8350

KMTC KMTS KMTA

Spitzer Microlensing Campaign Exoplanets

OGLE-2015-BLG-0966

OGLE-2016-BLG-1067

OGLE-2016-BLG-1195

OGLE-2016-BLG-1190

Calchi Novati, IPAC/Caltech - June 18, 2019

Galactic Distributions of Exoplanets

OGLE-2014-BLG-0124	0.5 <i>M_J</i>	4.1 kpc	Udalski+ (2015)
OGLE-2015-BLG-0966	21 <i>M</i> ⊕	3.1 kpc	Street+ (2016)
OGLE-2016-BLG-1195	1.4 M_{\oplus}	3.9 kpc	Shvartzvald+ (2017)
OGLE-2016-BLG-1190	13 M _J	6.7 kpc	Ryu+ (2018)
OGLE-2017-BLG-1140	1.6 <i>M_J</i>	7.3 kpc	Calchi Novati+ (2018)
OGLE-2016-BLG-1067	0.4 <i>M</i> _J	3.7 kpc	Calchi Novati+ (2019)
OGLE-2018-BLG-0596	13.9 <i>M</i> ⊕	6. kpc	Jung+ (2019, submitted)

Disk-Bulge 3-2 (4-1?)

and OB170406, OB180799, OB180932, KB180029,

Calchi Novati, IPAC/Caltech - June 18, 2019