'Auxiliary' Science with the WFIRST Microlensing Survey:

Measurement of the Compact Object Mass Function over 10 Orders of Magnitude; Detection of ~10⁵ Transiting Planets; Astroseismology of ~10⁶ Bulge Giants; Detection of ~5x10³ Trans-Neptunian Objects; and Parallaxes and Proper Motions of ~6x10⁶ Bulge and Disk Stars.

Science in our Own Backyard with WFIRST June 18, 2019 Scott Gaudi (many figures/numbers taken from Matthew Penny)

Ohio State University

WFIRST's Microlensing Survey Strategy. (preliminary)

DARK ENERGY

- 7 fields for a total of $\sim 2 \text{ deg}^2$
- Wide W149_{AB} (0.93-2 μm) filter*.
- **15 minute cadence.**
- 50s exposures.
- Observations every at least 12 hours in at least one other filter
 (e.g., Z087,F184), 900 total obs.
 - 6 x 72 day seasons.
 - ~41,000 exposures in $W149_{AB}$.
 - ~432 total days spread over 5 year mission.

Penny et al. 2019

*One photon per second for W149_{AB} ~27.6

Statistical Power.

For a W149_{AB}~21.15 star:

- Photon-noise relative photometric precision of σ~0.01 mag per exposure.
- Total of ~10⁹ photons over the survey.
- Saturation @ W149_{AB}
 ~14.8.
- Root N: ²√41,000 ~ 200.

Penny et al. 2019

Sample Size and Microlensing Events.

Stars ($W149 < 15$)	${\sim}0.3 imes10^6$
Stars ($W149 < 17$)	${\sim}1.4\times10^{6}$
Stars (W149 < 19)	${\sim}5.8\times10^6$
Stars ($W149 < 21$)	${\sim}38 imes 10^6$
Stars ($W149 < 23$)	$\sim 110 \times 10^{6}$
Stars ($W149 < 25$)	${\sim}240 \times 10^6$
Microlensing events $ u_0 < 1$	${\sim}27,000$
Microlensing events $ u_0 < 3$	$\sim 54,000$

Penny et al. 2019

Photometric and Astrometric Precision. (Relative, Poisson Noise Only)

	H _{AB}	# of Stars	Relative photometric precision (per exp.)	Astrometric precision (per exp.)
WFIRST Z087-W149-F184	<19	6 x 10 ⁶	~0.8%	~0.6 mas
	<21	40 x 10 ⁶	~1%	~1.5 mas

Penny et al. 2019

Probe the Compact Object Mass Function from ~30 $M_{\odot}...$

Clanton & Gaudi 2017

...down to the mass of Pluto!

Wide-orbit & free floating planets. Wide sensitivity to measure mass budget in range down to $1M_{\oplus}$ Earthmasses per star down to $0.001 M_{\oplus}$.

Johnson et al., in prep.

Log10(30 x mass of the sun/mass of Pluto) ~ 10!

ASTROPHYSICS • DARK ENERGY • EXOPLANET

Asteroseismology of 10⁶ giants.

DARK ENERGY

- WFIRST will be able to measure v_{max} and Δv for the ~10⁶ H_{AB}<14 red giant stars in the survey fields.
- Only measure v_{max} for fainter stars.
- Will also be able to measure precise (~0.3%) distances to these stars via parallax (if photonnoise limited).

Gould et al. 2015

Resolved Stellar Populations.

DARK ENERGY

- WFIRST will obtain one of the deepest fields ever taken.
 - ~2x10⁶s in W149.
 - ~3x10⁵s in Z087.
- Compare to the SWEEPS 9x10⁴s in F606W (V) and F814W (I).

Sahu et al. 2006

Galactic Structure.

- Photon noise-limited parallaxes of <10% and proper motion measurements of 0.3% (0.01 mas/yr) for ~4x10⁶ bulge and disk stars with W149_{AB}<21.
- Deep multicolor photometry in a least one bluer filter (e.g., Z087) for these stars.
- Shallow photometry in all filters.
- With this dataset, it will be possible to:
 - Estimate T_{eff} , [M/H], Age, Luminosity, and A_H for all these stars.
 - Probe the disk and Galactic bulge mass and velocity distribution (including Galactic bar structure).
 - Probe the metallicity and age distribution of the disk and bulge.
 - Create an exquisite extinction map in the survey area.

Solar System Science.

DARK ENERGY

- WFIRST will detect ~5000 TNOs down to W149_{AB}<30 (corresponding to D~10 km) of 17 deg².
 - Substantially below the collisional break.
- Orbital elements will be determined to a few %, allowing for dynamical classification.
 - ~1000 of these will occult stars, and several dozen will occult more than one star.

Gould 2014

10⁵ Transiting Planets

Expected yield of transiting planets orbiting dwarfs with W149_{AB}<21 (Montet et al. 2017)

- WFIRST will detect ~10⁵ transiting planets with radii down to ~2R⊕.
- Most host stars will have measured distances.
- Several thousand can be confirmed by the detection of their secondary eclipses.
- Some systems will have measured transiting timing variations.

Bennett & Rhie 2012 Montet et al. 2017

Control of Systemics: Detector Characterization.

- Many of these applications will require new data reduction algorithms in order to realize their full science potential.
- *Excellent-to-exquisite* control of systematics will be required for many of these applications.
- The extent to which systematics can be controlled in unclear.
- However, with its ~4x10⁴ dithered images of ~10⁸ mostly constant point sources of known fluxes, positions, and colors, the microlensing survey may provide the best dataset to characterize the WFI detectors, including artifacts such as:
 - Persistence, Inter-pixel Capacitance, Count Rate Nonlinearity, and Intra-pixel Response Variations.

'Auxiliary' Science.

- Measurement of the Compact Object Mass Function over 10 Orders of Magnitude.
- Detection of ~10⁵ Transiting Planets.
- Astroseismology of ~10⁶ Bulge Giants.
- Detection of ~5x10³ Trans-Neptunian Objects.
- Parallaxes and Proper Motions of ~6x10⁶ Bulge and Disk Stars.
- Oh and some planets founds by microlensing too...

