Finding isolated stellar mass black holes with WFIRST

Casey Lam (UC Berkeley) With Jessica Lu (UC Berkeley), Matthew Hosek Jr. (UCLA), William Dawson (LLNL), and Nathan Golovich (LLNL)

What happens when a star dies?

The fate of a star depends on its mass (size not to scale) NASA/Chandra/Harvard

The fate of a star also depends on its metallicity, core structure, etc... Stellar evolution is hard and not a solved problem

Where are the free-floating stellar mass black holes?

- Stellar mass BHs detected to date: ~2 dozen
- Predicted: 10⁸ 10⁹ BHs in Milky Way (Agol & Kamionkowski 02, Timmes+96)

Remillard & McClintock 2006

Photometric Microlensing

Microlens parallax: Earth moving around Sun produces asymmetry in light curve

Wyrzykowski+16

Astrometric microlensing

B. S. Gaudi (OSU)

Astrometric microlensing

For 10 M_☉ BH, max shift of 1.1 mas (c.f. 0.5 M_☉ star, max shift of 0.25 mas)

WFIRST astrometric precision: ~0.05 mas

> Astrometry + Photometry → Lens mass

J. R. Lu (UC Berkeley)

How will WFIRST help find BHs?

Penny+19

Context	Estimated performance
Single-exposure precision	0.01 px; 1.1 mas
Typical guest-observer program (100 exposures of one field)	0.1 mas
Absolute astrometry accuracy	0.1 mas
Relative proper motions derived from High-Latitude Survey	$25 \ \mu { m as yr}^{-1}$
Relative astrometry, Exoplanet MicroLensing Survey (per image)	1 mas
Relative astrometry, Exoplanet MicroLensing Survey (full survey)	3–10 µas
Spatial scanning, single scan	10 μ as
Spatial scanning, multiple exposures	1 μ as
Centering on diffraction spikes	$10 \ \mu as$

Sanderson+17

PopSyCLE (**Population Synthesis** for Compact object Lensing Events)

Besancon model (Robin+03, implementation Sharma+11)

Stellar model of Milky Way

Select component of Milky Way (e.g. bulge)

STELLAR

EVOLUTION

Select single-age subset of component

Stellar evolution: MIST models (Choi+16, Dotter 16, Paxton+11,13,15) Initial-final mass relations: WD (Kalirai+08), BH/NS (Raithel+18, Sukhbold+16),

NIR Extinction (Damineli+16)

How many lenses will be black holes?

~0.1% of stellar objects are BHs

~1% of lenses are BHs

(Intrinsic) Einstein crossing time distribution

 \sim 33% of long (t_E > 100 day) events are BH

$$t_E \propto \sqrt{M_L}$$

O(100-1000) of BHs and NSs can have masses measured!

WFIRST can probe the Milky Way BH mass function

Underlying distribution (SFH + IFMR + IMF)

As detected by microlensing

Use microlens parallax + astrometric shift to confirm BH lens candidates

 $t_E \propto \sqrt{M_L}$ π_E

 $\delta_{c,max} \propto \sqrt{M_L}$

Use Einstein crossing time + microlens parallax to confirm BH lens candidates

 $t_E \propto \sqrt{M_L}$ πE

What can you do with a large sample of BHs?

- Number of BHs in the Milky Way
- Construct the present-day BH mass function
 - Information about IMF, IFMR, SFH
- Probe BH formation channels and binary fraction
 - Stellar binaries? Two isolated BHs? Both? Neither?
- Constrain BH spatial and velocity distributions
 - Centrally concentrated due to dynamical friction? Supernova kicks?

Summary

- WFIRST microlensing survey will yield O(100-1000) BH masses (orders of magnitude more than possible with individual follow-up)
- Enabled by simultaneous photometry + astrometry
- Milky Way BH mass function and more!

wfirst.ipac.caltech.edu

Extra Slides

PopSyCLE (Population Synthesis for Compact object Lensing Events)

- Stellar model of the Milky Way: Galaxia (Sharma+11)
 - Implements Besancon model (Robin+03)
 - Stellar evolution: MIST (Choi+16, Dotter 16, Paxton+11,13,15)
- Initial-final mass relations for compact objects
 - BHs and NS: Raithel+18, Sukhbold+16
 - WDs: Kalirai+08
- Extinction law in the NIR (Damineli+16)

Initial-final mass relation, black holes + neutron stars

BH IFMR implemented probabilistically in PopSyCLE

PopSyCLE (Population Synthesis for Compact object Lensing Events)

- Event finding calculation
 - Find close approaches within survey window and calculate microlensing parameters
 - Estimate blending from neighbors within seeing disk
- Impose observational cuts/constraints
 - Event duration
 - Magnitude (of source + lens + neighbor stars)
 - Magnification amplitude
 - Blending

(Intrinsic) Einstein crossing time distribution

$$t_E \propto \sqrt{M_L}$$

O(100-1000) of BHs and NSs can have masses measured!