The Evolution of the Magellanic Cloud and WFIRST

David L Nidever

Montana State University / NOAO

Hyalite Mountains, Bozeman, Montana

Shane Mayer-Gawlik

How do Galaxies form?

Most galaxies in the Universe are dwarfs

The Web of Dark Matter Halos

Large Magellanic Cloud

The Magellanic Clouds The largest and closest satellite dwarf galaxies of our Milky Way galaxy

Small Magellanic Cloud

The Magellanic Clouds

MILKY WAY GALACTIC PLANE

LARGE MAGELLANIC CLOUD

SMALL MAGELLANIC CLOUD

The Magellanic Stream

LEADING ARM

MILKY WAY GALACTIC PLANE

MAGELLANIC STREAM

LARGE MAGELLANIC CLOUD

SMALL MAGELLANIC CLOUD

Nidever et al. (2010)

Dual Magellanic Surveys

Magellanic Clouds Survey

- High-res spectroscopic survey
- Chemical abundances
- Radial velocities

- Deep photometric survey of Magellanic Clouds
- Map stellar structure
- Detailed SFH maps

Dual Magellanic Surveys

Combination allows tighter constraints on evolution
Can't uniquely solve SFH with chemistry alone
Accurate SFH from deep photometry
Chemistry constrains other parameters

(e.g., IMF, outflows/inflows, SN Ia/II contributions)

All sky image in the Near Infrared

APOGEE

Apache Point Observatory Galactic Evolution Experiment

Explore chemistry and kinematics over <u>entire</u> MW with high-resolution, near-infrared spectra of 400,000 stars

APOGEE

2.5m telescope

Spectrograph

- FOV 7 deg²
- 300 fibers
- R=22,000
- Dual-hemisphere

- 1.5-1.7 microns
- ~400,000 MW star
- Abundances for ~24 elements

A New SDSS Eye: The APOGEE Southern Spectrograph

Irénée du Pont Telescope

APOGEE South

- APOGEE-2S Magellanic Clouds survey
- ~5,000 stars in 26 fields
- Two seasons of observations completed
- Combined SMASH + APOGEE data to constrain chemical evolution
- Detailed spatial and chemical exploration of these massive dwarfs

Target Selection

- 10 target classes including
 - supergiants
 - PostAGB
 - AGB
 - RGB
- Most fields have ~200 RGB stars, 50 minimum

APQGEE

APOGEE Observations

Simulation

• Radial migration in simulation qualitatively reproduces the observed change in MDF skewness in MW midplane

Loebman, Debattista, Nidever et al. (2016)

SDSS

The α -bimodality

Nidever et al. (2014)

Hayden, Bovy, Holtzman, Nidever et al. (2015)

LMC α Abundances

Nidever et al. (2019b)

Chemical Cartography

LMC

LMC α Abundances

SDSS

- Very low SFE
- 50x lower than MW high-α sequence
 - Gas consumption timescale of 100 Gyr

Nidever et al. (2019b)

Recent Starburst

Nidever et al. (2019b)

The α -Knee

Stellar Mass (M_{\odot})	
MW	6x10 ¹⁰
LMC	2×10 ⁹
SMC	5x10 ⁸
Sgr	2x10 ⁶ (4x10 ⁸)
Fornax	2x10 ⁷
Sculptor	2×10 ⁶

Nidever et al. (2019b)

- PI: Nidever
- Large and deep imaging survey of the Magellanic Clouds
- 50 nights on Blanco-4m telescope + DECam
- 40 member international team
- NSF funded project

The 520 megapixel Dark Energy Camera (DECam)

Nidever et al. (2017)

Blanco 4m

The Small Magellanic Cloud

Moon shown for scale

The Small Magellanic Cloud

Moon shown for scale

> One DECam image

- Overview paper (Nidever et al. 2017)
- 420 million objects, 4 billion source measurements (more objects than all of Sloan Digital Sky Survey!)
- 5σ point source depths: 23.9, 24.8, 24.5, 24.2, 23.5 mag (ugriz)
 ~6.5x deeper than SDSS and ~4x deeper than Pan-STARRS
- <u>First data release</u> (Jan 2017)
 - » 61 fields
 - » 100 million objects
 - » via NOAO Data Lab <u>https://datalab.noao.edu</u>
- <u>Final data release</u> (Sep 2019)
 - » 197 fields
 - » 420 million objects

MAPS Discovery of LMC and SMC Stellar Halos

- Uncovered very extended population to 20 kpc
- Large LMC stellar halo

Majewski, Nidever et al. (2009)

- Uncovered very extended population to 12 kpc
- Large SMC stellar halo

Nidever et al. (2011)

SMASH CMDs

34 mag/arsec²!

Nidever et al. (2019a)

SMASH Density Profile

- SMASH confirms the MAPS results on the extended LMC periphery
- Extends to ~21°
- LMC surrounded by large "envelope" of stars of old, metal-poor stars

Nidever et al. (2019a)

Photometric Metallicity Map

- Shallow LMC metallicity gradient slightly favors
 outer disk origin
- Homogeneous SMC metallicity indicates recently tidally disturbed material

Miller, Nidever et al., in prep.

Photometric Metallicity Map

Star Formation Histories

- Much current effort on LMC/SMC SFH
- Artificial star tests of all inner fields nearly done
- Will have star formation **movie** of inner LMC and SMC

DECam Local Volume Exploration (DELVE) Survey

- Large DECam survey of dwarf galaxy in the southern hemisphere
- 128 nights of DECam observing, 100 member team
- Three components:
 - WIDE: Shallow, wide-area survey of MW dwarfs (Choi co-chair)
 - Magellanic: Fully-filled, deep survey of MCs (Nidever)
 - DEEP: Deep survey of 6 LV dwarf galaxies

DELVE Magellanic Clouds

DELVE Magellanic Clouds

- Complete deep coverage!
- Map out Magellanic stellar structure to high fidelity
- Unravel stellar halos, accretion history, interaction

- Young cluster discovered in Gaia DR2 near the Leading Arm
- Consistent in CMD, spatial, proper motion space

- Young cluster discovered in Gaia DR2 near the Leading Arm
- Consistent in CMD, spatial, proper motion space

Isochrone fitting
Age: I30 Myr
Mass: I200 M_o
Metallicity: [Fe/H]= -I.I
Distance: 28.9+/-0.1 kpc

- Orbits roughly consistent with Magellanic origin
- Orbits indicate it passed through the MW disk ~130 Myr ago, likely triggered the star formation event

Price-Whelan I: Spectroscopy

- Follow-up Magellan+MIKE spectroscopy
- S/N~10-15 spectra of 28 stars
- •[Fe/H] = -1.19
- Confirms isochrone fitting value of -1.1!
- Consistent with LAF and MS metallicity

Nidever et al., (2019c), in prep.

Price-Whelan I: Spectroscopy

• V_{LSR} = 272 km/s

- About ~40 km/s faster than LA II gas, consistent with ram pressure slowing gas down
- Confirms association with LA II
- Will use RV and spatial offset to constrain MW hot halo density

Nidever et al., (2019c), in prep.

What big outstanding questions can WFIRST answer?

Central LMC

• Central LMC is very crowded, challenging from ground

Central LMC

- Central LMC is very crowded, challenging from ground
- Obtain deep CMDs of central R<2° from WFIRST

Star formation History

- Central LMC is oldest part of the galaxy
- Need deep CMDs to study the SFH of the old component

Star formation History

- Central LMC is oldest part of the galaxy
- Need deep CMDs to study the SFH of the old component

Supermassive Black Hole

- Reines et al. (2013) found ~150 SMBH in LMC/SMC mass galaxies
- None found in LMC/SMC so far
- Sphere of influence small (~40") and center of LMC not well constrained
- Need proper motions of many stars over large area to find SMBH dynamically

Far Periphery

- Are there Magellanic stellar populations at even larger radii?
- There are indications of some diffuse BHB streams R=30-50 deg
- WFIRST will be able to detect these extremely diffuse populations with deep CMDs

Stars in the Magellanic Stream

18 SMASH Leading Arm Fields

Wide Field Infrared Survey Telescope

star/galaxy separation algorithm applied

- Are there stripped stars in the Magellanic Stream and Leading Arm?
- SMASH leading arm fields show a feature that could be MSTO stars at 100 kpc
- Lots of unresolved blue galaxies at these magnitudes
- Hard to stars from galaxies in this regime even with deep, multi-band data
- Need large-area, deep, high spatialresolution data to resolve this issue.
- Need WFIRST mapping

Conclusions

APOGEE

- No sign of radial migration in MDF skewness or alpha-bimodality in LMC or SMC
- MCs were "lazy" early on with low-SFE likely due to low density environment. Consistent with first infall. (Nidever et al. 2019b)

SMASH

- Mapped relatively metal-poor stellar envelope around LMC to 18 kpc (Nidever et al. 2019a)
- Photometric metallicities suggest LMC periphery population may have come from outer disk and SMC highly tidally disturbed (Miller, Nidever et al. 2019, in prep.)

Leading Arm Cluster

- Young cluster discovered in Leading Arm (Price-Whelan et al. 2019)
- Spectroscopy confirm LAF origin and metal-poor (Nidever et al., 2019c, in prep.)

WFIRST

- SFH of old populations and search for SMBH in central LMC
- Search for stars in far LMC periphery and Magellanic Stream / Leading Arm

