* \$ State -

15 33

New Gaia Insights into the Dynamics of the Local Group Roeland van der Marel

Local Group Proper Motion Dynamics

- Dynamics of stars, clusters, and galaxies inform about Formation, Evolution, Structure, Mass, Dark Matter, ...
- Line of Sight velocities (from spectroscopy) provide limited 1D information (assumptions, degeneracies)
- Proper Motions (PMs) yield better insights, by themselves (2D) or combined with LOS data (3D)
 - ASTRO2010 Decadal Survey: Astrometry = 1 of 5 "Discovery Areas"
- Local Group (LG) is the only place to study these issues in detail (Galactic Archeaology)
- Required accuracies are tens of µas/yr
 - High spatial resolution and stability \rightarrow space observatories
 - Long time baselines; exquisite control of systematics
- Now: HST, Gaia
- Future: JWST, WFIRST, LSST, 30m-ground, ...

Unique Observational Capabilities

- Gaia
 - Detections down to G \sim 21; PMs useful for LG to G \sim 17
 - Accuracies will increase relative to DR2 by factor ~10
 - Full Sky coverage
 - Ancillary information (parallax, LOS velocity, ...)
- HST
 - High Accuracies down to V ~ 25
 - Small FOV
 - Archive going back 30 years
- WFIRST:
 - 100x the HST FOV

Globular Clusters PMs; HST vs Gaia [Sohn et al. 2018; Vasiliev 2018]

- Extends time baseline for PMs relative to HST, JWST, Gaia, ... 3

HSTPROMO: High-Resoultion Space Telescope Proper Motion Collaboration (http://www.stsci.edu/~marel/hstpromo.html)

- Set of many different HST, Gaia, JWST investigations, with detailed theory components
 - Lead coordinators:
 van der Marel & Anderson
 - Project/Paper Leads:
 Sohn, Watkins, Bianchini, Fardal, del Pino, Fritz, Libralato, Bellini, Patel,
 - Many Other Members
- Status/Achievements
 - 15+ years of work
 - 50 HST + 12 Gaia papers

Milky Way Globular Clusters with Gaia

[Helmi et al. 2018; Vasiliev 2018]

- Dynamical Modeling of bulk 3D velocities constrains MW $M_{vir} \sim (1.5 \pm 0.6) \times 10^{12} M_{\odot}$ (Watkins et al. 2019)
- Rotation curve on the sky constrains internal dynamics

Milky Way Stellar Streams with Gaia

 Orphan Stream: Clearly separated from foreground populations (Fardal et al. 2019) and traced across sky (Koposov et al. 2019)

[Fardal et al. 2019]

Milky Way Dwarf Satellites with Gaia

- Bulk PMs of dSphs out to few hundred kpc (Simon 2018; Fritz et al. 2018; Massari et al. 2018; ...)
- Applications: plane of satellites, satellite infall and tidal perturbations, mass modeling, etc.

Andromeda/ Triangulum with Gaia

- Brightest blue/red supergiants in M31 and M33 are accessible with Gaia (van der Marel et al. 2019)
- Detects the rotation of each galaxy in the plane of the sky
- Yields absolute PMs consistent with prior HST/VLBA measurements
- Suggests M33 is on first infall into M31

Patel

Distant Dwarfs with HST

- Gaia cannot study dSphs beyond a few hundred kpc (TRGB of old population has G~21 at M31's distance)
- HST can study PMs of such galaxies, e.g., the NGC 147 and 185 pair (Sohn et al. 2019, in prep.)

- Applications: plane of satellites, satellite infall and tidal perturbations, mass modeling, etc.
- Other HST/JWST studies ongoing/planned (e.g., M32) 10

Combining Gaia with HST

• Fainter magnitudes G>18

- HST (relative) positions are more accurate than Gaia
- Improved PMs are obtained by combining HST and Gaia positions
- Example (right):
 Globular cluster NGC 6535

[Libralato, priv. comm.]

 Ongoing HST Archival Study (del Pino et al); see also Massari et al. (2018, 2019) for Draco/Sculptor

WFIRST Astrometry

- WFIRST will be powerful for astrometry and proper motion studies
 - Especially useful at faint magnitudes over wide areas
 - Can use existing HST methodologies (PSF fitting etc.)
 - Can be used by itself (over limited time baseline) or in combination with existing data/catalogues (incl. Gaia)
- Astrometry Working Group White paper (Sanderson, Bellini, et al. 2017) provides details

Context	Estimated performance	§
Single-exposure precision	0.01 px; 1.1 mas	1.
Typical guest-observer program (100 exposures of one field)	0.1 mas	1.1
Absolute astrometry accuracy	0.1 mas	3.3
Relative proper motions derived from High-Latitude Survey	$25 \ \mu as \ yr^{-1}$	4.
Relative astrometry, Exoplanet MicroLensing Survey (per image)	1 mas	4.2
Relative astrometry, Exoplanet MicroLensing Survey (full survey)	3–10 µas	4.2
Spatial scanning, single scan	10 µas	2.4
Spatial scanning, multiple exposures	1 μ as	2.4
Centering on diffraction spikes	10 µas	2.4

§	Science case	Astrometric precision	
2.1	Motions of dwarf satellites in the Local Group	$2.2\times 10^{-4}~{\rm pixelyr^{-1}}$	$25 \mu { m as yr^{-1}}$
2.2	Motion of stars in the distant MW stellar halo	$\leq 2\times 10^{-4}~{\rm pixelyr^{-1}}$	$\leq 25\mu{\rm asyr^{-1}}$
2.3	Low-mass end of the subhalo mass function	$1.8\times 10^{-4}~{\rm pixelyr^{-1}}$	$20\mu{ m asyr^{-1}}$
2.4	Detection & characterization of exoplanets	$\leq 9 \times 10^{-5}$ pixel	$\leq 10~\mu {\rm as}$
2.5	Structure of the MW bulge	$\leq 9 \times 10^{-5}$ pixel	$\leq 10~\mu {\rm as}$
2.6	Star formation in the MW	$\leq 4.5 \times 10^{-4} \ \mathrm{pixel} \mathrm{yr}^{-1}$	$\leq 50~\mu{\rm as~yr^{-1}}$
2.7	Isolated black holes & neutron stars	$4.5 imes 10^{-4}$ pixel	50 μ as
2.8	Internal kinematics in GCs	$\lesssim 1.8 \times 10^{-4} \ {\rm pixel} \ {\rm yr}^{-1}$	$\lesssim 20~\mu{ m asyr}^{-1}$

12

Conclusions

- Proper Motions yield new insights into Local Group Galaxy Dynamics
 - Can be reliably measured with various observatories
- Great progress has been made, first with HST and now with Gaia
- WFIRST and other future observatories will yield further advances
- Key for progress in Galactic Archeology
 - Understand galaxy formation and evolution through resolved studies of nearby galaxies

