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Motivation: WFIRST and Satellites of LMC-analogs

e ACDM predicts many dwarf galaxies orbiting
LMC-type galaxies (largest dwarfs)

e WFIRST can find satellites of isolated LMC's
and test predictions on the faint end of
galaxy formation

e Promising results from ground-based
surveys, e.g. MADCASH

Carlin et-al 201'6_
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Motivation: WFIRST and Satellites of LMC-analogs

Satellites themselves also useful laboratories:

e Ultrafaints = limits of galaxy formation
o Least massive, most abundant
o Only observed near MW so far
o Tools to study gal. form. processes,
reionization, early universe (fossils)
o Evolution in different environments

e Detection: field vs. satellite galaxies

Carlin et-al 201'6_
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FIRE Simulations: Our Sample

Jahn et al., in prep
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FIRE Simulations: Our Sample

Jahn et al., in prep
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FIRE Simulations: Our Sample LMC-mass halos show
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Substructure Depletion
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How many subhalos are hosted by LMC-mass
centrals in DMO versus Hydro simulations?

> Subhalo counts are
time-averaged for
z<0.1, or 1.3Gyr

Suppression/Depletion

Tidal interactions with central galaxy
reduce the number of subhalos at a given V__
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Substructure Depletion
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Substructure Depletion Strong depletion from MW at inner regions (~3)
LMC-mass hosts retain much more substructure (~1.5)

103;\ T L L B LN AR ALAR) LA T T URRARRRS T T T T T
- s === mllq DMO
i N ~-- m11d DMO
be L Ny --- mlle DMO
S 102
g 102}
> :
Al
E
» 101F
Z, :
dsup < 1.0T200m
8 g = N -
= 6 average suppression /" A B S A
< in MW-mass hosts N A e IS ]
E i ’ \\7_ e \t2 e - ﬁ'f'_//f"f' AT
3 AN T v w2 2 T TR e = 7
(@) i .gé'\" N7 . — _“/, A = ' - = & < / _ S
g 1 e R I eeer S G - NS e i
'z - Jahnetal, in prep ]
0.5 L L 1 oo b e b bl L L | PRI SRS MR SR S W SRR STATY Ay L L 1 oo b e b i
2 3 45 10 20 30 2 3 45 10 20 30 2 3 45 10 20 30 40
Vmax (km/s) Vmax (Km/s) Vmax (Km/s)

Dark & Luminous Satellites of the LMC in FIRE Ethan Jahn WEFIRST: Science in our own backyard, June 19, 2019



Substructure Detection with WFIRST
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e |[solated LMC-like hosts are less destructive to their

substructure than MW's

e Stronger relative dynamical impact from dark halos
for LMC-host system versus MW-host system

e WEFIRST detects individual stars, so disturbances in
tidal streams are possible to detect, which point to
interactions with dark subhalos e —
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Substructure: Dark and Luminous
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Dwarf galaxy
Globular cluster

Where are the Satellites

of the LMC?

Car2, Car3, Hyd1, Hor2
Kallivayalil et al., 2018

Carina, Fornax
Pardy et al., 2019; Jahn et al., in prep

© ESA/Gaia/DPAC; Map and orbits: CC BY-SA 3.0 IGO

www.esa.int Credit: ESA/Gaia/DPAC European Space Agency



Where are the Satellites
of the LMC?

e Agreement on bright end
favors large LMC halo

e [sthe LMC missing a few
ultrafaint companions?

e T[riangles = likely candidates
awaiting full proper motions

Ultrafaints in FIRE:
Wheeler et al. 2015, 2018
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ahn et al., in pre
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Effect of the LMC Environment on Satellites
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Tidal stripping seems to be
important, even at LMC scale

Reductionin V__ points to a
lowering of satellite density
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redshift
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redshift
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e Gaps in stellar streams around LMC-mass galaxies
from subhalo interactions

e Ina 10 Mpc volume, expect ~dozen LMC's
o 60-84 satellites > 10° M., (5-7 per host)
o Many more ultrafaints as well
o WFIRST should find numerous dwarf satellites
of Magellanic-type galaxies

o Tidally stripped, low-density satellite galaxies

e Many reionization fossils
o Some faint satellites may still be forming stars?

o Stellar photometry allows WFIRST to measure Star Formation Histories!
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