DWARF GALAXIES AND STELLAR STREAMS IN THE ERA OF GAIA AND WFIRST

Ting Li
Leon Lederman Fellow, Fermilab
KICP Associate Fellow, University of Chicago

WFIRST Science In Our Own Backyard Caltech, June 18-20, 2019

SOC : a talk "on the topic of Galactic streams, satellites, DM and relation of WFIRST to DES and MSE."

DWARF GALAXIES AND STELLAR STREAMS IN THE ERA OF GAIA AND WFIRST

Ting Li
Leon Lederman Fellow, Fermilab
KICP Associate Fellow, University of Chicago

WFIRST Science In Our Own Backyard Caltech, June 18-20, 2019

Astronomy: Science of Observations

Astrometry

Position

Photometry

Brightness and color
Stellar Population (CMD)
Structure Parameters
Distance (galaxies or streams)

Spectroscopy

Line-of-sight Motion Stellar Parameters
Chemical Composition

Where are we now?

Ongoing Surveys

 Astrometry
Gaia

Photometry DES/DECam

Spectroscopy
$4-10 \mathrm{~m}$ MOS

Ongoing Surveys

Astrometry

Gaia

Catalog Mining

Photometry DES/DECam

Spectroscopy 4-10 m MOS

Discovery
Follow-up Observations

Photometry DES/DECam

- optical gri/zY imaging survey with Blanco 4 m and DECam at CTIO
- ~600 nights from 2012-2018
- 5000 sq deg sky coverage with a depth of 24-25th mag
- an international collaboration of ~ 400 members; 90% on cosmology
- ~10-20 active members in Mitiny Way WG (current conveners: Keith Bechtol and Ting Li)
Dark Energy Survey (DES)
- 24 papers published, 3 submitted
- ~ 180 papers published totalin DES

Ultra-Faint Dwarf Galaxies:

Discovery

Koposov et al. (2008)
Walsh et al. (2009)
Willman et al. (2010)

Color-Magnitude Domain

Spatial Domain

Dwarf Galaxies: Discovery

Belokurov et al. (2013)

New Ultra-Faint Dwarf Galaxies

Galactic Coords

blue: prior 2015
red: 2015 - Now (DES)
green: 2015 - Now (others include
DECam)

New Ultra-Faint Dwarf Galaxies

Tucana III
$\sim 25 \mathrm{kpc}$
$\mathrm{Mv} \sim-2.4$

Bechtol et al. 2015
Drlica-Wagner et al. 2015

Dwarf Galaxy Discovery Timeline

Credit: Keith Bechtol

Dwarf Galaxy Discovery Timeline

Credit: Keith Bechtol

Bootes IV w/ HSC
arXiv: 1906.07332

Spectroscopy 8m MOS

6-10m telescopes
FOV: 15-30 arcmin

Dwarf Galaxies: Discovery

Dwarf Galaxies: Spectroscopy w/ Magellan/IMACS

Tucana III
Simon et al. 2017

Eridanus II
Li et al. 2017
confirmation; member identification; dynamical mass

Dwarf Galaxies: Spectroscopy

As of April 2019, 44 satellite galaxies have published radial velocities.

Dwarf Galaxy Discovery Timeline

Credit: Keith Bechtol

Astrometry

April 2018: Gaia DR2

Gaia

only classical dwarf galaxies has measured Proper Motion prior Gaia

Dwarf Galaxies: Proper Motion

PM from confirmed spectroscopic members

Simon et al. 2018
See also Fritz et al. 2018, Kallivayalil et al. 2018....

Dwarf Galaxies: Proper Motion

PM without spectroscopic members

$$
\mathcal{L}=\left(1-f_{\mathrm{MW}}\right) \mathcal{L}_{\text {satellite }}+f_{\mathrm{MW}} \mathcal{L}_{\mathrm{MW}}
$$

Reticulum II

 $\ln \mathcal{L}_{\mathrm{PM}}=-\frac{1}{2}(\chi-\bar{\chi})^{\top} C^{-1}(\chi-\bar{\chi})-\frac{1}{2} \ln \left(4 \pi^{2} \operatorname{det} C\right)$

$$
\chi=\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)
$$

$$
C=\left[\begin{array}{cc}
\epsilon_{\mu_{\alpha}}^{2} \cos \delta+\sigma_{\mu_{\alpha}}^{2} \cos \delta & \epsilon_{\mu_{\alpha_{2}}}^{2} \cos \delta \mu_{\delta} \\
\epsilon_{\mu_{\alpha}}^{2} \cos \delta \times \mu_{\delta} & \epsilon_{\mu_{\delta}}^{2}+\sigma_{\mu_{\delta}}^{2}
\end{array}\right]
$$

Pace \& Li 2019
Columba I

Dwarf Galaxies

As of April 2019, 44 satellite galaxies have published radial velocities.

As of April 2019, $\mathbf{4 6}$ satellite galaxies have published proper motions.

Ongoing Surveys

Astrometry

Gaia

Catalog Mining

Photometry DES/DECam

Spectroscopy 4-10 m MOS

Discovery
Follow-up Observations

Stellar Streams : Discovery

Stellar Streams : Discovery

Credit: Alex Drlica-Wagner
NGC 1904

Red $=$ selection region around isochrone; $\tau=13 \mathrm{Gyr}, Z=0.0002, m-M=14-19$

Stellar Streams: Discovery

Nora Shipp UChicago

Shipp et al. 2018

Stellar Streams : Discovery

Nora Shipp UChicago

Shipp et al.
2018

11 new stream
+4 previous known (including 2 from DES)

Stream Discovery Timeline

Compiled data at https://tinyurl.com/y6gggvee

Mostly from galstream (Mateu+2018) https://github.com/cmateu/galstreams

Stream Discovery Timeline

Compiled data at https://tinyurl.com/y6gggvee

Mostly from galstream (Mateu+2018) https://github.com/cmateu/galstreams

Spectroscopy: dwarfs vs streams

Dwarf Galaxies: > 70\%

Stellar Streams: ~ 10\%

Stream: more diffuse, higher background contamination

Streams : Proper Motions

Proper Motion measurements on all DES streams

Shipp et al.
to be submitted

Stream: Spectroscopy with AAT

AAT: Anglo-Australian Telescope (4 meter) at Siding Spring Observatory

2df: 2-deg (in diameter) field fiber positioner w/ 400 fibers

AAOmega: a dual-arm optical spectrograph

Large Field-of-View, High Multiplexity = An Ideal Instrument for Stellar Streams

Stream: Spectroscopy with AAT

Tidal tails of Tucana III

Southern Stellar Stream Spectroscopic Survey (S ${ }^{5}$)

- AAT + 2df/AAOmega

Li et al.
to be submitted

- ~30 members international collaborations Co-PI (Dan Zucker and Ting Li)
- Targets with $15<\mathrm{g}<19.5$
- RV precision ~ 1-5km/s
- Started in August 2018
- ~25 nights in 2018B
- 10 DES streams fully mapped
- 43k spectra on 38k targets
- Expand beyond DES footprint in 2019 for a total of 20 streams

Southern Stellar Stream Spectroscopic Survey (S^{5})

Southern Stellar Stream Spectroscopic Survey (S^{5})

Streams : DES + Gaia + S ${ }^{5}$

- Characterize stream progenitors
- Constrain the Milky Way potential
- Assess the influence of LMC

Where are we now?

Where will we be at in $10-20$ yrs?

Ongoing Surveys

Astrometry

$$
\mathrm{G} \sim 20
$$

(similar in r)

Photometry
 DES

$$
\mathrm{r} \sim 23.5
$$

50 kpc

Future Surveys

Astrometry WFIRST

$$
r \sim 25-26
$$

Photometry

 LSST$$
\mathrm{r} \sim 27
$$

Spectroscopy $30 m+10 m$

dwarf: (30m) r~24.5
streams: (10m)r~22.5

More discoveries (w/ LSST or WFIRST) at fainter luminosity, farther distance, lower surface brightness

Astrometry

 WFIRST$$
r \sim 25-26
$$

Photometry LSST

$$
\mathrm{r} \sim 27
$$

Spectroscopy

 $30 \mathrm{~m}+10 \mathrm{~m}$dwarf: (30m) r~24.5
streams: (10m) r~22.5

Streams: Now and Future

- SDSS/DES: streams < 50 kpc
- Proper motions from Gaia
- Spectroscopy from S^{5} and other upcoming 4m spectroscopic surveys, e.g. DESI, WEAVE, 4MOST
- LSST:
streams > 50 kpc
- Proper motions from WFIRST
- What about spectroscopy?
- 13 8m+ optical telescopes: Subaru, 4xVLTs, 2xKeck, 2xGemini, LBT, SALT, GTC, HET

Streams: Now and Future

- SDSS/DES: streams < 50 kpc
- Proper motions from Gaia
- Spectroscopy from S^{5} and other upcoming 4m spectroscopic surveys, e.g. DESI, WEAVE, 4MOST
- LSST:
streams > 50 kpc
- Proper motions from WFIRST
- What about spectroscopy?
- 13 8m+ optical telescopes: Subaru, 4xVLTs, 2xKeck, 2xGemini, LBT, SALT, GTC, HET

14th telescope?

Maunakea Spectroscopic Explorer
Facility transformation

Maunakea Spectroscopic Explorer

Facility transformation

- 11.25 m mirror (in diameter)
- 1.5 deg field of view (in diameter)
- ~3200 fibers in low/med resolution ($\mathrm{R} \sim 2 \mathrm{k}-6 \mathrm{k}$) ~ 1000 fibers in high resolution (R~20k-40k)
- Dedicated Survey Telescope

Maunakea Spectroscopic Explorer

9 Science Working Group

- Exoplanets and stellar astrophysics
- Chemical nucleosynthesis
- The Milky Way and resolved stellar populations
- Galaxy formation and evolution
- Active Galactic Nuclei and Supermassive Black Holes
- Astrophysical tests of dark matter
- Cosmology
- Time domain astronomy and the transient Universe
- Solar System science

Maunakea Spectroscopic Explorer

- Astrophysical tests of dark matter

DM chapter (40 pages): 1903.03155
All Science Cases (300 pages): 1904.04907

One Science Case w/ WFIRST on Dark Matter Science

investigation on the known streams w/ WFIRST

Stellar Streams: Subhalo Perturbations

Credit: Denis Erkal

Stellar Streams: Subhalo Perturbations - GD-1

It is interesting that the stream managed to evade possible destruction by interaction with DM subhalos orbiting around MW (Carlberg 2009). Although, the clumpiness observed in the stream may be attributed to these past interactions (S. E. Koposov et al. 2010, in preparation).

$$
\text { Koposov et al. } 2010
$$

Stellar Streams: Subhalo Perturbations - GD-1

Price-Whelan \& Bonaca (2018)

Stellar Streams: Subhalo Perturbations - GD-1

GD-1: 10 kpc

Price-Whelan \& Bonaca (2018)

Stellar Streams: Subhalo Perturbations - ATLAS?

GD-1: 10 kpc ATLAS: 25 kpc

Shipp et al. (2018)
Price-Whelan \& Bonaca (2018)

Gaps in ATLAS Stream? Need WFIRST

Perturbations in 6D

We are in the era with overwhelming amount of data

SOC : a talk "on the topic of Galactic streams, satellites, DM and relation of WFIRST to DES and MSE."

Thanks for your attention

Dwarf Galaxies: Core vs. Cusp

Simon et al. 2019
arXiv: 1903.04742
Astro2020 White Paper

- a 5σ detection of a central density cusp
- $3 \mathrm{~km} / \mathrm{s}$ precision in RV and PM
- $8 \mu \mathrm{as} / \mathrm{yr}$ at 80 kpc
- 21 as/yr at 30 kpc
- Achievable on Draco like dwarf galaxies with WFIRST w/ a baseline of a few years

